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Abstract

We show that a new design criterion, i.e., the least squares
on subband errors regularized by a weighted norm, can be
used to generalize the proportionate-type normalized sub-
band adaptive filtering (PtNSAF) framework. The new crite-
rion directly penalizes subband errors and includes a sparsity
penalty term which is minimized using the damped regular-
ized Newton’s method. The impact of the proposed gener-
alized PtNSAF (GPtNSAF) is studied for the system identi-
fication problem via computer simulations. Specifically, we
study the effects of using different numbers of subbands and
various sparsity penalty terms for quasi-sparse, sparse, and
dispersive systems.

1 The Least Squares on Subband Errors Regular-
ized by a Weighted Norm

Instead of minimizing the fullband squared error [1], we mini-
mize the sum of the squared error in each subband with a sparsity
penalty term. We propose the following cost function:

J(s) =
M∑
i=1

|ei(n)|2 + τ‖s‖2W−1(n) (1)

where ei(n) = hTi e(n) = hTi
[
d(n)−UT (n)s

]
is the i-th subband

error and s ∈ RL is the coefficients of the adaptive filter. The reg-
ularization term is designed to expedite the system identification
process by introducing a weighted norm for filter taps. We use
the W(n) suggested in [1, 2], i.e., wi(n) =

(
|si(n)| + c

)2−p
, p ∈

[1.0, 2.0], c > 0,∀i for promoting different degrees of sparsity.

2 Deriving GPtNSAF

To proceed, we perform the affine scaling transform (AST) [3] on
the optimization variable s:

q = W−1
2(n)s. (2)

Applying (2) into (1) , the equivalent optimization problem
minq J(q) =

∑M
i=1|ei(n)|2 + τ‖q‖22 in q domain can be eas-

ily solved. We define the a posteriori AST variable at time
n as q(n|n) , W−1

2(n)s(n) and the a priori AST vari-
able as q(n + 1|n) , W−1

2(n)s(n + 1). Now, we con-
sider the damped regularized Newton’s method for the up-
date rule on minimizing J(q), i.e., q(n + 1|n) = q(n|n) −
µ
[
∇2

qJ
(
q(n|n)

)
+ 2δI

]−1
∇qJ

(
q(n|n)

)
where µ > 0 is the

learning rate or the step size for adaptation and δ > 0 is a reg-
ularization parameter. The gradient of J(q) is given by

∇qJ(q(n|n)) = −2W
1
2(n)Ub(n)eb(n) + 2τq(n|n). (3)

Next, the Hessian is given by

∇2
qJ(q(n|n)) = 2W

1
2(n)Ub(n)U

T
b (n)W

1
2(n) + 2τI. (4)
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Figure 1: Block diagram of the GPtNSAF.

Therefore, the update rule on q domain is given by

q(n + 1|n) =
(

I− µτ

δ + τ

[
I−Ψ(n)

])
q(n|n)

+ µW
1
2(n)Ub(n)Φ(n)eb(n)

(5)

where we have applied the Woodbury matrix identity to avoid
large matrix inversion (L-by-L) in the damped regularized New-
ton’s method and Ψ(n) = W

1
2(n)Ub(n)Φ(n)UT

b (n)W
1
2(n). No-

tice that the inverse of the regularized weighted subband correla-
tion matrix, i.e.,

Φ(n) =
[
(δ + τ )IM + UT

b (n)W(n)Ub(n)
]−1

(6)

is a very small matrix inversion which only has M-by-M since
we have L � M in most cases. Then, by utilizing (2) in (5) to
convert q back to the s domain, we have

s(n + 1) =

(
I− µτ

δ + τ

[
I−Ψ(n)

])
s(n)

+ µW(n)Ub(n)Φ(n)eb(n).

(7)

Finally, setting τ → 0+ leads to the update rule for the GPtNSAF:
s(n + 1) = s(n) + µg(n) where

g(n) = W(n)Ub(n)
[
δIM + UT

b (n)W(n)Ub(n)
]−1

eb(n). (8)

We have used Ub(n) = U(n)H and eb(n) = HTe(n) ∈ RM

where H ∈ RN×M is an M -channel analysis filter bank matrix.

3 Special Cases of the GPtNSAF

•PtNSAF: By selecting H as the set of eigenvectors for the
weighted correlation matrix UT (n)W(n)U(n), we have the
PtNSAF: g(n) =

∑M
i=1

ei(n)
uTi (n)W(n)ui(n)+δ

W(n)ui(n).

•NSAF: Based on PtNSAF, setting W(n) = I gives the NSAF:
g(n) =

∑M
i=1

ei(n)
uTi (n)ui(n)+δ

ui(n).

•PtNLMS: Setting M = N = 1 yields H = 1 ∈ R, thus we get
the PtNLMS: g(n) = e(n)

uT (n)W(n)u(n)+δW(n)u(n).

•NLMS: Based on PtNLMS, setting W(n) = I gives the
NLMS: g(n) = e(n)

uT (n)u(n)+δu(n).

4 Simulation Results

The input signal is a first order autoregressive (AR) process. The
analysis bank H is a cosine-modulated pseudo-quadrature mirror
filter (QMF) bank. The MSE curves were obtained as the ensem-
ble average over 1000 Monte Carlo runs and normalized to start
from 0 dB. For all MSE simulations, we used µ = 0.2

M .
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Figure 2: Different impulse responses (IRs), namely, target systems of length
L = 256 with different degrees of sparsity. Left: sparse; right: dispersive.
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Figure 3: From the top to the bottom row: M = 1, 2, 4, 8. From left to right:
sparse IR to dispersive IR. The best p values on each target system are consis-
tent across different numbers of subbands. Therefore, we suggest p ∈ [1.0, 1.2]
and p ∈ [1.8, 2.0] for sparse and dispersive target systems, respectively. Notice
that the convergence speed is significantly improved for all target systems as
the number of subbands increases. The benefits of increasing M and incorpo-
rating W(n) are complementary and additive. The benefits of increasing M
and incorporating W(n) are complementary and additive for fast convergence.

0 2 4 6 8 10

Number of input samples 10
3

-30

-20

-10

0

M
S

E
 (

d
B

)

M=1

M=2

M=4

M=8

ideal

J
min

0 10 20 30 40 50

Number of input samples 10
3

-30

-20

-10

0

M
S

E
 (

d
B

)

M=1

M=2

M=4

M=8

ideal

J
min

Figure 4: We use the suggested p values for M = 1, 2, 4, 8 (left: p = 1.2;
right: p = 1.8). By increasing the number of subbands, the MSE curves
with colored input signal approach the ideal case, i.e., the GPtNSAF with
M = 1 using white input signal. Note that this ideal case is equivalent to the
propotionate-type NLMS with white input.
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Figure 5: PtNSAF approximates GPtNSAF under different degrees of spar-
sity since the magnitude responses of the analysis filters do not significantly
overlap (diagonal assumption). To sum up, GPtNSAF yields the best conver-
gence speed than the others as we expected under all cases.

5 Conclusion

A generalized PtNSAF is proposed to further improve the conver-
gence speed based on directly minimizing subband errors with
a sparsity penalty term. Different adaptive filters including the
PtNSAF, NSAF, PtNLMS, and NLMS can be obtained by choos-
ing the corresponding hyperparameters of GPtNSAF. The bene-
fits of increasing the number of subbands and promoting different
degrees of sparsity of the estimated filter coefficients are com-
pared under various environments. The simulation results show
that the proposed GPtNSAF is suitable for identifying quasi-
sparse, sparse, and dispersive systems under colored excitation.
More importantly, the two aspects of usingM and p provide com-
plementary and additive benefits for speeding up convergence.
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