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Abstract
Objective:
• Propose a novel way of deriving proportionate adaptive fil-

ters that exploit sparsity in the underlying system response.
Methods:
•Diversity measure minimization using the iterative

reweighting techniques [1, 2, 3] well-known in the sparse
signal recovery (SSR) area.
•Affine scaling transformation (AST) [4] strategy com-

monly employed in the optimization literature.
•Limiting case: utilize a regularization coefficient λ→ 0+.
Results
•Least mean square (LMS)-type and normalized LMS

(NLMS)-type algorithms that can incorporate various di-
versity measures.
• Sparsity promoting LMS (SLMS) and Sparsity promoting

NLMS (SNLMS) that realize proportionate adaptation sim-
ilar to the proportionate NLMS (PNLMS) [5], but with a
more systematic way of designing the step-size control fac-
tors based on SSR techniques rather than on heuristics.
• Simulation results demonstrate the flexibility of the algo-

rithms to fit different sparsity levels of the systems.

1 Background

1.1 Adaptive Filters for System Identification in Figure. 1

Unconstrained optimization problem using instantaneous error:

min
h

Jn(h) , e2n =
(
dn − uTnh

)2
. (1)

which leads to the well-known LMS and NLMS:
•LMS – apply the stochastic gradient descent:

hn+1 = hn −
µ

2
∇hJn(hn) = hn + µunen, (2)

where µ > 0 is the step size.
•NLMS – apply the stochastic regularized Newton’s method:

hn+1 = hn − µ
(
∇2

hJn(hn) + 2δI
)−1
∇hJn(hn)

= hn +
µunen

uTnun + δ
,

(3)

where µ > 0 is the step size and δ > 0 is a small constant for
regularization.

1.2 Diversity Measure Minimization for SSR

Finds sparse solutions to underdetermined y = Ax:

min
x
‖y −Ax‖22 + λG(x), λ > 0, (4)

where G(x) =
∑M−1

i=0 g(xi) is the (separable) general diversity
measure in which the function g(·) has to satisfy certain condi-
tions [1].
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Figure 1: System identification block diagram. The adaptive filter hn =
[h0,n, h1,n, ..., hM−1,n]T is used to emulate the unknown system ho. un =
[un, un−1, ..., un−M+1]

T is the input data vector. vn is an additive noise.
en = dn − uTnhn is the error signal. The goal is to continuously adjust the
coefficients of hn such that hn = ho; i.e., to identify the unknown system.

Iterative reweighted `2 approach [2]: to use this approach the
function g(t) has to be concave in t2; i.e., it satisfies g(t) = f (t2),
where f (z) is concave for z ∈ R+. It iteratively solves:

x(k+1) = argmin
x
‖y −Ax‖22 + λ

∥∥∥(W(k))−1x
∥∥∥2
2
, (5)

where W(k) = diag{w(k)
i } with

w
(k)
i =

(
df (z)

dz

∣∣∣∣
z=(x

(k)
i )2

)−1
2

, (6)

and d denotes the differential operator.

2 Incorporating Sparsity into Adaptive Filters

We propose to consider the following optimization problem:

min
h

Jn(h) + λG(h), (7)

whereG(h) =
∑M−1

i=0 g(hi) and λ is the regularization coefficient.
As in the iterative reweighted `2 approach, we instead consider:

min
h

Jn(h) + λ
∥∥∥W−1

n h
∥∥∥2
2
, (8)

where Wn = diag{wi,n} and

wi,n =

df (z)

dz

∣∣∣∣
z=h2i,n

−1
2

, (9)

Consider the following reparameterization similar to AST [4]:

q , W−1
n h. (10)

Use (10) for the objective function in (8) and perform minimiza-
tion with respect to q,:

min
q

J `2n (q) , Jn(Wnq) + λ‖q‖22 . (11)

Define the a posteriori AST variable at time n:

qn|n , W−1
n hn (12)

and the a priori AST variable at time n:

qn+1|n , W−1
n hn+1. (13)

Using the above equations we derive LMS-type and NLMS-type
sparse adaptive filtering algorithms in the following.

2.1 LMS-Type Sparse Adaptive Filtering Algorithm

Apply stochastic gradient descent in the q domain:

qn+1|n = qn|n −
µ

2
∇qJ

`2
n (qn|n). (14)

This leads to:

qn+1|n = (1− µλ)qn|n + µWnunen. (15)

Multiplying both sides of (15) by W(n) and using the relation-
ships (12) and (13), we will get back to the h domain:

hn+1 = (1− µλ)hn + µW2
nunen. (16)

This is the update rule of the generalized LMS-type sparse adap-
tive filtering algorithm using reweighted `2.

2.2 NLMS-Type Sparse Adaptive Filtering Algorithm

Apply stochastic regularized Newton’s method in the q domain:

qn+1|n = qn|n − µ
(
∇2

qJ
`2
n (qn|n) + 2δI

)−1
∇qJ

`2
n (qn|n). (17)

This will result in:

hn+1 = (I− µλΦn)hn +
µW2

nunen
uTnW2

nun + λ + δ
, (18)

where for simplicity we have combined multiple terms into a sin-
gle matrix Φn. This is the update rule of the generalized NLMS-
type sparse adaptive filtering algorithm using reweighted `2.

3 Sparsity Promoting Algorithms

Considering the limiting case of λ→ 0+ gives rise to the follow-
ing Sparsity promoting LMS (SLMS):

hn+1 = hn + µW2
nunen, (19)

and Sparsity promoting NLMS (SNLMS):

hn+1 = hn +
µW2

nunen
uTnW2

nun + δ
. (20)

A diagonal matrix W2
n on the gradient to leverage sparsity – re-

alizing proportionate adaptation.
Example of Wn update: employing the p-norm-like diversity

measure with g(hi) = |hi|p, 0 < p ≤ 2. Using (9) leads to:

wi,n =

(
2

p

(
|hi,n| + c

)2−p)1
2

, (21)

where c > 0 is a small constant added for stability purposes. The
parameter p plays the role for fitting different sparsity levels:
• p→ 1 approximates the step-size control factors of PNLMS
• p = 2 recovers the LMS and NLMS (sparsity-unaware)

In practice, we replace W2
n in (19) and (20) with Sn where:

Sn =
W2

n
1
M tr (W2

n)
, (22)

which is found to help stabilize algorithms.

4 Simulation Results

Figure 2 shows three systems with different sparsity levels (left
column): quasi-sparse, sparse, and dispersive (from top to bot-
tom), and the corresponding mean squared error (MSE) learning
curves of using SNLMS with various p values (right column).
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Figure 2: Learning curves of using SNLMS to identify systems with impulse
responses of different sparsity levels. We see that the selection of p is cru-
cial for obtaining optimal performance in different cases. For the quasi-sparse
case, the fastest convergence is given by p = 1.5, which seems a reasonable
value in terms of finding a balance between PNLMS (p → 1) and NLMS
(p = 2). For the sparse case, p = 1.2 gives the best results, which is also in-
tuitive since the sparsity level has increased. For the dispersive case, p = 1.8
results in the fastest convergence and is comparable to NLMS. These results
show that the algorithm exploits the underlying system structure in the way
we expect. Note that since λ = 0 is utilized, the objective function in (7) ex-
erts diminishing impact on enforcing sparsity on the solution, and the SNLMS
converges toward the Wiener-Hopf solution as the NLMS. This shows that the
proposed methods can leverage sparsity for speeding up convergence while
not sacrificing estimation quality should sparsity be present.

5 Conclusion
We exploited the connection between sparse system identification
and SSR, and utilized the iterative reweighting strategies to derive
proportionate adaptive filters that incorporate sparsity. Moreover,
utilizing λ → 0+, the proposed SLMS and SNLMS can take ad-
vantage of, though do not strictly enforce, the sparsity of the un-
derlying system if it already exists.
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