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Abstract
Objective:

e Propose a novel way of deriving proportionate adaptive fil-
ters that exploit sparsity 1n the underlying system response.

Methods:

e Diversity measure minimization using the iterative
reweighting techniques [1, 2, 3] well-known 1n the sparse
signal recovery (SSR) area.

e Affine scaling transformation (AST) [4] strategy com-
monly employed in the optimization literature.

e Limiting case: utilize a regularization coefficient A — 0.

Results

e Lecast mean square (LMS)-type and normalized LMS
(NLMS)-type algorithms that can incorporate various di-
versity measures.

e Sparsity promoting LMS (SLMS) and Sparsity promoting
NLMS (SNLMS) that realize proportionate adaptation sim-
ilar to the proportionate NLMS (PNLMS) [3], but with a

more systematic way of designing the step-size control fac-
tors based on SSR techniques rather than on heuristics.

e Simulation results demonstrate the flexibility of the algo-
rithms to fit different sparsity levels of the systems.

1 Background

1.1 Adaptive Filters for System Identification in Figure.

Unconstrained optimization problem using instantaneous error:

2
min J,(h) £ ¢2 = (dn ~ ugh) . (1)

which leads to the well-known LMS and NLMS:
e LMS — apply the stochastic gradient descent:

hn+1 =h, — gvhjn(hn> =h,, + Uy Cn, (2)

where © > 0 1s the step size.

e NLMS — apply the stochastic regularized Newton’s method:

1
h,. = h, — i (vijn(hn) 4 251) Vi Jo(h,)
— hn | qunen Y (3)
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where 11 > 0 is the step size and 0 > 0 is a small constant for
regularization.
1.2 Diversity Measure Minimization for SSR

Finds sparse solutions to underdetermined y = AxX:

min ||y — Ax|; + A\G(x), A > 0, (4)

where G(x) = Zf\io_ "g(x;) is the (separable) general diversity
measure in which the function ¢(-) has to satisfy certain condi-
tions [[1].
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Figure 1: System identification block diagram. The adaptive filter h,, =
Moy Ry ooy har—1.0]" s used to emulate the unknown system h’. u, =
Uy, Up—1, ..., Un_pr+1)’ is the input data vector. v, is an additive noise.
e, = d, — ughn is the error signal. The goal 1s to continuously adjust the
coefficients of h,, such that h,, = h’; 1.e., to identify the unknown system.

Iterative reweighted (5 approach [2)]: to use this approach the
function ¢() has to be concave in t°; i.e., it satisfies g(t) = f(¢*),

where f(z) is concave for z € R .. It iteratively solves:
2

x ) = argmin  |ly — Ax|| + A()(W<k>)—1x) 5
X 2
where W) = diag{w'"'} with
w§k> _ (df(z) ) | (6)
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and d denotes the differential operator.

2 Incorporating Sparsity into Adaptive Filters

We propose to consider the following optimization problem:

m&n Jo(h) + AG(h), (7)

where G(h) = ) f\i " g(h;) and \ is the regularization coefficient.

As 1n the iterative reweighted /5 approach, we instead consider:
2
min J,(h) + )\‘ Wn1h| ; (8)
where W,, = diag{w; ,,} and
d 2
wi = | L , 9)
7 dZ ZZh?n

Consider the following reparameterization similar to AST [4]:
q= W 'h (10)

Use (10) for the objective function in (8)) and perform minimiza-
tion with respect to q,:

min J2(a) 2 J,(Waa) + Al (1
Define the a posteriori AST variable at time n:
A = W, hy, (12)
and the a priori AST variable at time n:
Aniijn = W, hy. (13)

Using the above equations we derive LMS-type and NLMS-type
sparse adaptive filtering algorithms in the following.
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2.1 LMS-Type Sparse Adaptive Filtering Algorithm

Apply stochastic gradient descent in the q domain:

H :
This leads to:
An+ijn = (1 — ,u)\)qn\n T Mwnunen- (15)

Multiplying both sides of (15) by W (n) and using the relation-
ships (12)) and (13)), we will get back to the h domain:

h,. = (1 — pMh, + uWiu,e,. (16)

This 1s the update rule of the generalized LMS-type sparse adap-
tive filtering algorithm using reweighted (.

2.2 NLMS-Type Sparse Adaptive Filtering Algorithm

Apply stochastic regularized Newton’s method 1n the g domain:

—1
Qn+ijn = Unjn — Y (véJ£2(qn|n> + 251) qur,fZ(qn\n) (17)

This will result 1n:

L W?Lunen
u/W2u, + A+ 46’
where for simplicity we have combined multiple terms 1nto a sin-

gle matrix ®,,. This 1s the update rule of the generalized NLMS-
type sparse adaptive filtering algorithm using reweighted /-.

h,., = (I— u\®,)h, + (18)

3 Sparsity Promoting Algorithms

Considering the limiting case of A — 07 gives rise to the follow-
ing Sparsity promoting LMS (SLMS):

h,,1 = h, + pWu,e,, (19)
and Sparsity promoting NLMS (SNLMS):

| ,LLW%U_an
" ulW2iu, + 6

A diagonal matrix W? on the gradient to leverage sparsity — re-
alizing proportionate adaptation.

Example of W,, update: employing the p-norm-like diversity
measure with g(h;) =|h,|", 0 < p < 2. Using (9) leads to:

wn — | T hzn , 21
w (p(\ o) o1

where ¢ > (0 1s a small constant added for stability purposes. The
parameter p plays the role for fitting different sparsity levels:

h, .1, =h

(20)

DO | —

e p — | approximates the step-size control factors of PNLMS
e p = 2 recovers the LMS and NLMS (sparsity-unaware)

In practice, we replace W,,% in (19) and (20) with S,, where:
W2
STL — 1 — 9 )

which 1s found to help stabilize algorithms.

(22)
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4 Simulation Results

Figure 2 shows three systems with different sparsity levels (left
column): quasi-sparse, sparse, and dispersive (from top to bot-
tom), and the corresponding mean squared error (MSE) learning
curves of using SNLMS with various p values (right column).
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Figure 2: Learning curves of using SNLMS to identify systems with impulse
responses of different sparsity levels. We see that the selection of p is cru-
cial for obtaining optimal performance 1n different cases. For the quasi-sparse
case, the fastest convergence 1s given by p = 1.5, which seems a reasonable
value in terms of finding a balance between PNLMS (p — 1) and NLMS
(p = 2). For the sparse case, p = 1.2 gives the best results, which 1s also in-
tuitive since the sparsity level has increased. For the dispersive case, p = 1.8
results in the fastest convergence and 1s comparable to NLMS. These results
show that the algorithm exploits the underlying system structure in the way
we expect. Note that since A = 0 1s utilized, the objective function 1n (/) ex-
erts diminishing impact on enforcing sparsity on the solution, and the SNLMS
converges toward the Wiener-Hopt solution as the NLMS. This shows that the
proposed methods can leverage sparsity for speeding up convergence while

not sacrificing estimation quality should sparsity be present.

5 Conclusion

We exploited the connection between sparse system identification
and SSR, and utilized the iterative reweighting strategies to derive
proportionate adaptive filters that incorporate sparsity. Moreover,
utilizing A — 07, the proposed SLMS and SNLMS can take ad-
vantage of, though do not strictly enforce, the sparsity of the un-
derlying system if it already exists.
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