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Problem of Acoustic Feedback

o Arises from a portion of the output sound at the receiver feeding
back to the microphone and getting reinforced by the hearing aid.

o Results in annoying howling and whistling sounds which could
become increasingly louder.

o Limits the maximum gain that a hearing aid device can provide.
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Figure: Illustration of acoustic feedback in the hearing aid.
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Solution: Adaptive Feedback Cancellation (AFC)

e Framework: Prediction-Error-Method (PEM) based AFC
[Spriet et al., 2008].
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Figure: Block diagram of the AFC framework.
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Adaptive Filtering

@ In the coefficient adaptation stage, the Least Mean Square
(LMS) algorithms are the most widely used adaptive filtering
techniques in AFC.

o Advantages:
1. computational simplicity
2. stability

e Drawbacks:

1. biased estimation
2. slow convergence speed

— Several methods have been proposed to overcome these downsides.
However, few of them exploit the structural characteristics of
feedback path IRs.
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Coefficient Adaptation: The Baseline Algorithm

The (Modified) Normalized LMS (NLMS) [Greenberg, 1998]
Update rule:

w(n+1) =w(n) + p(n)uy(n)es(n). (1)
Power-normalized step size:
I
p(n) = o2 n) +e (2)
Power estimation:
5%(n) = p5*(n — 1) + (1 - p)(uf(n) + €}(n)). ®3)

v

w(n) = [wo(n), w1 (n),...,wr_1(n)]T: the estimated AFC filter at time n
us(n) = [us(n),ur(n —1),...,up(n — L+ 1)]7

es(n) = ds(n) —w? (n)us(n)

w1 > 0: the step size parameter

e: a small positive constant to prevent division by zero

0 < p < 1: the forgetting factor

Ching-Hua Lee, et al. (UCSD) SLMS for AFC EUSIPCO 2017



Improving Convergence Speed. How?

e Well-known fact: the trade-off between fast convergence and low
steady-state error, controlled by the adaptation step size
parameter.

— p T: faster convergence , higher error
— p : slower convergence, lower error

e Combination of two adaptive filters with different step size
parameters [Schepker et al., 2016] can improve the convergence
rate without increasing the error. However, computational
complexity could double.

e Goal: With only one single adaptive filter, to speed up
convergence by taking advantage of the feedback path structure.
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Sparse Structure of the Feedback Path

e Observe: Typical feedback path IRs are temporally (quasi-)

sparse.
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Figure: Examples of measured acoustic feedback paths.
e Proportionate adaptation to take advantage of the sparsity:

The family of the Proportionate NLMS (PNLMS) algorithms
— Sparsity promoting LMS (SLMS) [Proposed]
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Proportionate Adaptation

@ The main idea:

— Each tap of the AFC filter gets updated independently using a
different step size.

— The step size is proportional to the magnitude of the tap itself.

— In each iteration, the step sizes are redistributed according to the
magnitude of coefficients of the current AFC filter.

Proportionate Matrix (or Step Size Control Matrix)

w(n+1) =w(n) + u(n)P(n)us(n)es(n). (4)

e P(n) = diag{po(n),p1(n),...,pr—1(n)} is an L-by-L diagonal matrix for
assigning different weights to different taps, where p;(n) is a function of
the current wy(n).

o Existing approaches: PNLMS-type algorithms — Different ways of
computing p;(n).
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PNLMS-Type Algorithms

PNLMS [Duttweiler, 2000]

where

Note: Some additional minor operations are needed to provide a mechanism for
preventing the algorithm from getting stuck at zero. For simplicity the equations are
now shown here.

v

1« lwi(n)]

pi(n) = +(1+0a) (7)

Flw(m)ll’

where « is a constant between [—1, 1] for different degrees of sparsity.
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PNLMS-Type Algorithms  (Cont’d)

IPNLMS-/; [Paleologu et al., 2010]

]_ — 1 — 6_6|wl(n)|
pi(n) = +(1+ta)—F—, (8)
L ZIwllo
since L1
~ B —Blwi(n
Iwllo ~ 320 [t — Pt 9)

where a € [—1,1] and 3 is a non-negative constant. A sparser system
would prefer a smaller .

e All of the above are ad hoc and not derived from minimizing any
underlying objective functions.

e No algorithms for other choices of £, norm (e.g., p = 0.8, 1.5).
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Proposed Algorithm: SLMS

e Ordinary LMS:
min J(w) = E [|es(n)[*] . (10)

e Adding the penalty term to incorporate sparsity:
min  J(w) = E [ley(n)*] + W}, (11)
where the £, norm diversity measure:

L—-1
Iwlif = Zl:o lwi”, p € (0,2] (12)

is added with a regularization parameter v > 0 to promote
sparsity in the solution w.
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Proposed Algorithm: SLMS  (Cont’

e Optimization tools:

1. Gradient of the £, norm w.r.t. w:
Vw [[w][} = pII(w)w, (13)

where II(w) = diag(|w;|P~2).

2. Affine scaling transformation:

a(w) 2 1% (w(n))w. (14)

— It belongs to the family of interior-point methods.

— Can be viewed as a mechanism to transform the original
optimization problem into an equivalent one in which the current
point is favorably positioned at the center of the feasible region.

— It leads to algorithms that can support larger learning steps along
the search direction, and the overall adaptation can be sped up.
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Proposed Algorithm: SLMS  (Cont’d)

@ The use of the affine scaling transformation is the key part in
deriving the SLMS. Reasons are:

1. It makes our algorithm fundamentally different from the ones
obtained by directly performing optimization in the original
coefficient domain, e.g., the Zero-Attracting LMS (ZA-LMS) like
algorithms [Chen et al., 2009, Taheri and Vorobyov, 2011]:

— «v > 0 to enforce sparse solutions, at the expense of introducing bias.
— If v = 0, they reduce to the ordinary LMS.

2. In our algorithm, the impact of the £, norm term on the optimal
solution is removed by setting v = 0 for the resulting algorithm.
It converges to the same place as the ordinary LMS; i.e., no
additional bias is introduced.
— However, it still benefits from sparsity due to the presence of the
proportionate matrix.

@ The algorithm does not enforce, but takes advantage of sparsity if

it exists in the structure. Thus the name: “Sparsity promoting
LMS (SLMS).”
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Proposed Algorithm: SLMS  (Cont’d)

SLMS [Proposed|

w(n + 1) = win) + u(n)P(n)us(n)es(n), (15)

where )
lwy(n)]“7P

= I—1 .’
%Zi:o |[w;(n)|2=P

pi(n) (16)

@ -y is not present in the algorithm.
e p is responsible for fitting different degrees of sparsity.

p = 1 approximates the PNLMS (highly proportionate: sparse).
p = 2 recovers the NLMS (non-proportionate: dispersive).

Ching-Hua Lee, et al. (UCSD) SLMS for AFC EUSIPCO 2017



Experimental Setup

e Computer simulations in MATLAB at a sampling rate of 16 kHz.

o The HA processing G(z) = gz~ with g = 20 and d corresponding
to a delay of 8 ms.

@ The feedback path IRs were measured using a behind-the-ear HA
with open fitting on a dummy head and truncated to a length of
263 sample (=~ 16.5 msec).

e The AFC filter length was L = 100 (6.25 msec) to cover the
significant part of the feedback IRs.

o Metrics:
1. Hearing-Aid Speech Quality Index (HASQI)
[Kates and Arehart, 2014]

2. normalized misalignment
3. Added Stable Gain (ASG) [Kates, 2001]
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cperiment I: Effect of p on Convergence

e Input: A speech-shaped noise sequence.

e System IRs with different sparsity levels:
@
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Figure: (a) a measured acoustic feedback path, (b) an artificial sparse
system, (c) an artificial dispersive system.
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Experiment I: Effect of p on Convergence (Cont’d)

o The resulting misalignment curves:
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Figure: The (a) feedback path, (b) sparse, and (c) dispersive IRs.
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periment II: Sensitivity of p

o Input: 25 male and 25 female speech files from TIMIT dataset.

e Measured acoustic feedback path IRs of 3 different scenarios:
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Figure: (a) f1: no obstruction, (b) f3: with a cellphone close to the ear,
and (c) f3: with a cellphone right on the ear.
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Simulation Result II: Sensitivity of p  (cont’d)

@ The obtained average HASQI scores over the 50 test files:
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Figure: Effect of p on speech quality of SLMS for (a) {1, (b) f3, and (c) fs.

@ p is optimal around 1.5, corresponding to the previous result.

@ p is not sensitive around its optimal value.
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Misalignment (dB)

" -

e Input: A speech-shaped noise sequence.

e The feedback path changed from f; to fy then f3 at 1/3 and 2/3 of
the input sequence, respectively.
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periment I1I: Comparison with Other Algorithms
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Figure: Misalignment and ASG Comparison.
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Experiment IV: Quality Comparison

e Input: 25 male and 25 female speech files from TIMIT dataset.
o Obtain the average HASQI scores over the 50 test files:

fi f f3 fios
Figure: Quality comparison: The first 3 cases were fixed environments
with fy, f3, and f3. The last case fi23 was the feedback path changing
from f; to fa then f3 at 1/3 and 2/3 of the input sequence, respectively.
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Conclusions

e Typical acoustic feedback paths have sparse structure. We use
proportionate adaptation to take advantage of it.

@ SLMS: a proportionate-type LMS derived by formally minimizing
an objective function with the ¢, norm diversity measure. p is not
sensitive near its optimal value.

e Compared to the baseline NLMS, the SLMS can provide about
0.25 HASQI and 5 dB ASG improvements.

e SLMS outperforms other proportionate-type algorithms in terms
of speech quality, misalignment, and ASG.
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Techniques for Reducing the Bias

@ Several methods have been proposed to address the bias issue.
The main idea is to decorrelate the signals before they are used to
compute the gradient for adaptation.

1. Filtered-X LMS (FXLMS) [Hellgren, 2002, Chi et al., 2003]

2. Prediction-Error-Method (PEM) based AFC [Spriet et al., 2008]
3. insertion of probe noise [Guo et al., 2012a]

4. phase modulation [Guo et al., 2012b]

5. PEM with frequency shifting [Strasser and Puder, 2015]

6. dual-microphone approach [Nakagawa et al., 2012]
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Proposed Algorithm: SLMS

SLMS [Proposed|

w(n+1) = w(n) + p(n)P(n)us(n)es(n), (17)
with (n)
n) = —l 18
pi(n) = TSty (18)
where
ri(n) = [Jwy(n)| + ¢[*7P. (19)

@ ¢ > 0 is a small constant to prevent from getting stuck once w;(n)
becomes zero.
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Evaluation Metrics

e HASQI [Kates and Arehart, 2014]
1. Compares the time-frequency envelope modulation, temporal fine
structure, and long-term spectra.
2. Measure the distortion between the feedback-compensated signal
e(n) and desired input z(n)
3. The HASQI score ranges from 0 to 1, where the higher the score,
the better the quality (less distortion).
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Evaluation Metrics  (Cont’d)

e Normalized misalignment:

Jo |F (%) = F(e7) Pdu

Misalignment = 10log; TP (&) P , (20)
where F(e“) and F(e/*) are the frequency responses of the
measured and estimated feedback IRs, respectively.

e ASG [Kates, 2001]:
. 1
ASG = 20log (mm , — )
@ |F(6]w) - F(e]w)| (21)

. 1
-2 (i)
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