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Our Project Website

To validate real-time performance of hearing aid algorithms.

Link: http://openspeechplatform.ucsd.edu
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Problem of Acoustic Feedback

Arises from a portion of the output sound at the receiver feeding
back to the microphone and getting reinforced by the hearing aid.

Results in annoying howling and whistling sounds which could
become increasingly louder.

Limits the maximum gain that a hearing aid device can provide.

Figure: Illustration of acoustic feedback in the hearing aid.
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Solution: Adaptive Feedback Cancellation (AFC)

Framework: Prediction-Error-Method (PEM) based AFC
[Spriet et al., 2008].

Figure: Block diagram of the AFC framework.
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Adaptive Filtering

In the coefficient adaptation stage, the Least Mean Square
(LMS) algorithms are the most widely used adaptive filtering
techniques in AFC.

Advantages:

1. computational simplicity
2. stability

Drawbacks:

1. biased estimation
2. slow convergence speed

– Several methods have been proposed to overcome these downsides.
However, few of them exploit the structural characteristics of
feedback path IRs.
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Coefficient Adaptation: The Baseline Algorithm

The (Modified) Normalized LMS (NLMS) [Greenberg, 1998]

Update rule:
w(n+ 1) = w(n) + µ(n)uf (n)ef (n). (1)

Power-normalized step size:

µ(n) =
µ

Lσ̂2(n) + ε
. (2)

Power estimation:

σ̂2(n) = ρσ̂2(n− 1) + (1− ρ)(u2f (n) + e2f (n)). (3)

w(n) = [w0(n), w1(n), ..., wL−1(n)]T : the estimated AFC filter at time n
uf (n) = [uf (n), uf (n− 1), ..., uf (n− L+ 1)]T

ef (n) = df (n)−wT (n)uf (n)
µ > 0: the step size parameter
ε: a small positive constant to prevent division by zero
0 < ρ ≤ 1: the forgetting factor
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Improving Convergence Speed. How?

Well-known fact: the trade-off between fast convergence and low
steady-state error, controlled by the adaptation step size
parameter.

– µ ↑: faster convergence , higher error
– µ ↓: slower convergence, lower error

Combination of two adaptive filters with different step size
parameters [Schepker et al., 2016] can improve the convergence
rate without increasing the error. However, computational
complexity could double.

Goal: With only one single adaptive filter, to speed up
convergence by taking advantage of the feedback path structure.
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Sparse Structure of the Feedback Path

Observe: Typical feedback path IRs are temporally (quasi-)
sparse.
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Figure: Examples of measured acoustic feedback paths.

Proportionate adaptation to take advantage of the sparsity:

– The family of the Proportionate NLMS (PNLMS) algorithms
– Sparsity promoting LMS (SLMS) [Proposed]
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Proportionate Adaptation

The main idea:

– Each tap of the AFC filter gets updated independently using a
different step size.

– The step size is proportional to the magnitude of the tap itself.
– In each iteration, the step sizes are redistributed according to the

magnitude of coefficients of the current AFC filter.

Proportionate Matrix (or Step Size Control Matrix)

w(n+ 1) = w(n) + µ(n)P(n)uf (n)ef (n). (4)

P(n) = diag{p0(n), p1(n), ..., pL−1(n)} is an L-by-L diagonal matrix for
assigning different weights to different taps, where pl(n) is a function of
the current wl(n).

Existing approaches: PNLMS-type algorithms – Different ways of
computing pl(n).
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PNLMS-Type Algorithms

PNLMS [Duttweiler, 2000]

pl(n) =
|wl(n)|

1
L ||w(n)||1

, (5)

where

||w(n)||1 =
∑L−1

i=0
|wi(n)|. (6)

Note: Some additional minor operations are needed to provide a mechanism for
preventing the algorithm from getting stuck at zero. For simplicity the equations are
now shown here.

Improved PNLMS (IPNLMS) [Benesty and Gay, 2002]

pl(n) =
1− α

2
+ (1 + α)

|wl(n)|
2
L ||w(n)||1

, (7)

where α is a constant between [−1, 1] for different degrees of sparsity.
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PNLMS-Type Algorithms (Cont’d)

IPNLMS-l0 [Paleologu et al., 2010]

pl(n) =
1− α
L

+ (1 + α)
1− e−β|wl(n)|

2
L ||w||0

, (8)

since

||w||0 ≈
∑L−1

i=0
[1− e−β|wi(n)|], (9)

where α ∈ [−1, 1] and β is a non-negative constant. A sparser system
would prefer a smaller β.

All of the above are ad hoc and not derived from minimizing any
underlying objective functions.

No algorithms for other choices of `p norm (e.g., p = 0.8, 1.5).
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Proposed Algorithm: SLMS

Ordinary LMS:
min
w

J(w) = E
[
|ef (n)|2

]
. (10)

Adding the penalty term to incorporate sparsity:

min
w

J(w) = E
[
|ef (n)|2

]
+ γ ‖w‖pp , (11)

where the `p norm diversity measure:

‖w‖pp =
∑L−1

l=0
|wl|p, p ∈ (0, 2] (12)

is added with a regularization parameter γ > 0 to promote
sparsity in the solution w.
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Proposed Algorithm: SLMS (Cont’d)

Optimization tools:

1. Gradient of the `p norm w.r.t. w:

∇w ‖w‖pp = pΠ(w)w, (13)

where Π(w) = diag(|wl|p−2).

2. Affine scaling transformation:

q(w) , Π
1
2 (w(n))w. (14)

– It belongs to the family of interior-point methods.
– Can be viewed as a mechanism to transform the original

optimization problem into an equivalent one in which the current
point is favorably positioned at the center of the feasible region.

– It leads to algorithms that can support larger learning steps along
the search direction, and the overall adaptation can be sped up.
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Proposed Algorithm: SLMS (Cont’d)

The use of the affine scaling transformation is the key part in
deriving the SLMS. Reasons are:

1. It makes our algorithm fundamentally different from the ones
obtained by directly performing optimization in the original
coefficient domain, e.g., the Zero-Attracting LMS (ZA-LMS) like
algorithms [Chen et al., 2009, Taheri and Vorobyov, 2011]:

– γ > 0 to enforce sparse solutions, at the expense of introducing bias.
– If γ = 0, they reduce to the ordinary LMS.

2. In our algorithm, the impact of the `p norm term on the optimal
solution is removed by setting γ = 0 for the resulting algorithm.

– It converges to the same place as the ordinary LMS; i.e., no
additional bias is introduced.

– However, it still benefits from sparsity due to the presence of the
proportionate matrix.

The algorithm does not enforce, but takes advantage of sparsity if
it exists in the structure. Thus the name: “Sparsity promoting
LMS (SLMS).”
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Proposed Algorithm: SLMS (Cont’d)

SLMS [Proposed]

w(n+ 1) = w(n) + µ(n)P(n)uf (n)ef (n), (15)

where

pl(n) =
|wl(n)|2−p

1
L

∑L−1
i=0 |wi(n)|2−p

, (16)

γ is not present in the algorithm.

p is responsible for fitting different degrees of sparsity.

– p = 1 approximates the PNLMS (highly proportionate: sparse).
– p = 2 recovers the NLMS (non-proportionate: dispersive).

Ching-Hua Lee, et al. (UCSD) SLMS for AFC EUSIPCO 2017 15



Experimental Setup

Computer simulations in MATLAB at a sampling rate of 16 kHz.

The HA processing G(z) = gz−d with g = 20 and d corresponding
to a delay of 8 ms.

The feedback path IRs were measured using a behind-the-ear HA
with open fitting on a dummy head and truncated to a length of
263 sample (≈ 16.5 msec).

The AFC filter length was L = 100 (6.25 msec) to cover the
significant part of the feedback IRs.

Metrics:

1. Hearing-Aid Speech Quality Index (HASQI)
[Kates and Arehart, 2014]

2. normalized misalignment
3. Added Stable Gain (ASG) [Kates, 2001]
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Experiment I: Effect of p on Convergence

Input: A speech-shaped noise sequence.

System IRs with different sparsity levels:
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Figure: (a) a measured acoustic feedback path, (b) an artificial sparse
system, (c) an artificial dispersive system.
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Experiment I: Effect of p on Convergence (Cont’d)

The resulting misalignment curves:
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Figure: The (a) feedback path, (b) sparse, and (c) dispersive IRs.
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Experiment II: Sensitivity of p

Input: 25 male and 25 female speech files from TIMIT dataset.

Measured acoustic feedback path IRs of 3 different scenarios:
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Figure: (a) f1: no obstruction, (b) f2: with a cellphone close to the ear,
and (c) f3: with a cellphone right on the ear.
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Simulation Result II: Sensitivity of p (cont’d)

The obtained average HASQI scores over the 50 test files:
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Figure: Effect of p on speech quality of SLMS for (a) f1, (b) f2, and (c) f3.

p is optimal around 1.5, corresponding to the previous result.

p is not sensitive around its optimal value.
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Experiment III: Comparison with Other Algorithms

Input: A speech-shaped noise sequence.

The feedback path changed from f1 to f2 then f3 at 1/3 and 2/3 of
the input sequence, respectively.
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Figure: Misalignment and ASG Comparison.
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Experiment IV: Quality Comparison

Input: 25 male and 25 female speech files from TIMIT dataset.

Obtain the average HASQI scores over the 50 test files:
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Figure: Quality comparison: The first 3 cases were fixed environments
with f1, f2, and f3. The last case f123 was the feedback path changing
from f1 to f2 then f3 at 1/3 and 2/3 of the input sequence, respectively.
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Conclusions

Typical acoustic feedback paths have sparse structure. We use
proportionate adaptation to take advantage of it.

SLMS: a proportionate-type LMS derived by formally minimizing
an objective function with the `p norm diversity measure. p is not
sensitive near its optimal value.

Compared to the baseline NLMS, the SLMS can provide about
0.25 HASQI and 5 dB ASG improvements.

SLMS outperforms other proportionate-type algorithms in terms
of speech quality, misalignment, and ASG.
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Thank You!
Questions?
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Backup Slides
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Techniques for Reducing the Bias

Several methods have been proposed to address the bias issue.
The main idea is to decorrelate the signals before they are used to
compute the gradient for adaptation.

1. Filtered-X LMS (FXLMS) [Hellgren, 2002, Chi et al., 2003]
2. Prediction-Error-Method (PEM) based AFC [Spriet et al., 2008]
3. insertion of probe noise [Guo et al., 2012a]
4. phase modulation [Guo et al., 2012b]
5. PEM with frequency shifting [Strasser and Puder, 2015]
6. dual-microphone approach [Nakagawa et al., 2012]
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Proposed Algorithm: SLMS

SLMS [Proposed]

w(n+ 1) = w(n) + µ(n)P(n)uf (n)ef (n), (17)

with

pl(n) =
rl(n)

1
L

∑L−1
i=0 ri(n)

, (18)

where
rl(n) = ||wl(n)|+ c|2−p. (19)

c > 0 is a small constant to prevent from getting stuck once wl(n)
becomes zero.
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Evaluation Metrics

HASQI [Kates and Arehart, 2014]

1. Compares the time-frequency envelope modulation, temporal fine
structure, and long-term spectra.

2. Measure the distortion between the feedback-compensated signal
e(n) and desired input x(n)

3. The HASQI score ranges from 0 to 1, where the higher the score,
the better the quality (less distortion).
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Evaluation Metrics (Cont’d)

Normalized misalignment:

Misalignment = 10log10

∫ π
0 |F (ejω)− F̂ (ejω)|2dω∫ π

0 |F (ejω)|2dω
, (20)

where F (ejω) and F̂ (ejω) are the frequency responses of the
measured and estimated feedback IRs, respectively.

ASG [Kates, 2001]:

ASG = 20log10

(
min
ω

1

|F (ejω)− F̂ (ejω)|

)

− 20log10

(
min
ω

1

|F (ejω)|

)
.

(21)
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