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Introduction

While deep neural networks (DNNs) are powerful models for many
engineering tasks, due to the lack of guidance on the network size,
they are typically designed to be quite large.

Over-parameterization of DNNs results in parameter redundancy,
which, in turn, leads to inefficiency.

Sparse signal recovery (SSR) techniques, on the other hand, find
compact solutions to overcomplete linear problems.

A logical step is to draw the connection between SSR and DNNs
for learning sparse networks that require less computation and
storage than the original, dense network.
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Problem Formulation

We consider the empirical risk minimization problem:

min
θ

J(θ, D) =
1

N

N−1∑
n=0

L
(
h(xn;θ),yn

)
. (1)

- θ: the parameter set of the hypothesis h(·;θ), e.g., a DNN

- D={(xn,yn)}N−1
n=0 : a dataset of N input-output pairs

- J(·, ·): the empirical risk objective function

- L(·, ·): the loss function

* For a DNN with M network parameters (weights and biases), we treat
θ = [θ0, θ1, ..., θM−1]T as a vector consisting of them all.
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Stochastic Gradient Descent (SGD) for DNN Training

In DNN training, the SGD is widely used for learning the model
parameters:

θt+1 ← θt − η∇θJ(θt, dt). (2)

- t: the timestep

- η > 0: the learning rate

- dt: a subset (mini-batch) of the training set D given to the model
at timestep t

- ∇θJ(θt, ·): the gradient of the objective function w.r.t. θ evaluated
at timestep t

* We will omit the dependency of J(·, ·) on the data for brevity.
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Proposed Sparsity Regularization Framework

A regularization term G(θ), serving as a diversity measure of θ, is
added to the empirical risk J(θ) to promote sparse solutions θ:

min
θ

JG(θ) , J(θ) + λG(θ), (3)

where λ is the sparsity regularization coefficient.

Commonly used in SSR is a separable diversity measure that has
the form G(θ) =

∑M−1
i=0 g(θi), where g(·) has the following

properties [Wipf and Nagarajan, 2010]:
Property 1: g(z) is symmetric, i.e., g(z) = g(−z) = g(|z|);
Property 2: g(|z|) is monotonically increasing with |z|;
Property 3: g(0) is finite;
Property 4: g(z) is strictly concave in |z| or z2.

Any function that holds the above properties is a candidate for
effective SSR algorithms.
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Iterative Reweighted `2 and `1 Frameworks

The iterative reweighted `2
[Gorodnitsky and Rao, 1997, Chartrand and Yin, 2008] and `1
[Candès et al., 2008] frameworks respectively suggest the following
problems be solved at timestep (iteration) t:

min
θ

J `2t (θ) , J(θ) + λ
∥∥∥Ω−1

t θ
∥∥∥2

2

min
θ

J `1t (θ) , J(θ) + λ
∥∥∥Ω−1

t θ
∥∥∥

1

, (4)

where Ωt = diag{ωi,t} is positive definite and each ωi,t is a
function of θi,t, whose form depends on the choices of the
reweighting framework and the diversity measure G(·).

The reweighting methods belong to the majorization-minimization
(MM) [Sun et al., 2017] family of algorithms: both J `2t (θ) and
J `1t (θ) serve as a majorizer of JG(θ). By iteratively minimizing
the majorizers we can approach a solution to minθ J

G(θ).
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Examples of G(θ) and the Corresponding Ωt

Table: Example diversity measures G(θ) and the corresponding Ωt updates.

Diversity G(θ) function Parameter Reweighting Ωt update
measure g(θi) = range framework ωi,t =

p-norm-like |θi|p 0 < p ≤ 2 reweighted `2
(

2
p

∣∣θi,t∣∣2−p
) 1

2

p-norm-like |θi|p 0 < p ≤ 1 reweighted `1
1
p

∣∣θi,t∣∣1−p

log-sum log(θ2i + ε) ε > 0 reweighted `2
(
θ2i,t + ε

) 1
2

log-sum log(|θi|+ ε) ε > 0 reweighted `1
∣∣θi,t∣∣ + ε

* In general, a smaller p or ε promotes stronger sparsity.

* Practically, for the p-norm-like cases using g(θi) = |θi|p, a small constant c > 0
is employed for avoiding possible algorithm stagnation and instability; i.e.,
substituting |θi,t|+ c for |θi,t| in the ωi,t updates.
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Affine Scaling Transformation (AST)

Before proceeding, we propose the following reparameterization in
terms of the (affinely) scaled variable q:

q , Ω−1
t θ, (5)

in which Ωt is used as the scaling matrix.

It can be interpreted as the AST commonly employed by the
interior point approach to solving optimization problems
[Nash and Sofer, 1996].

It is well-known in the context of SSR that AST-based methods
converge to sparse solutions
[Rao and Kreutz-Delgado, 1999, Gorodnitsky and Rao, 1997].
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Reparameterize the Problems by AST

We apply the AST to reparameterize J `2t (θ) and J `1t (θ) and
perform minimization in the q domain, that is:

min
q

J `2t (Ωtq) = J(Ωtq) + λ‖q‖22

min
q

J `1t (Ωtq) = J(Ωtq) + λ‖q‖1
, (6)

for the `2 and `1 cases, respectively.

To proceed, define the a posteriori AST variable at timestep t:

qt|t , Ω−1
t θt (7)

and the a priori AST variable at timestep t:

qt+1|t , Ω−1
t θt+1. (8)
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The AST-Based Update Rules

We formulate a recursive update by using SGD in the q domain:

qt+1|t ← qt|t − η∇qJ
`2(Ωtqt|t)

qt+1|t ← qt|t − η∇qJ
`1(Ωtqt|t)

, (9)

for the `2 and `1 cases, respectively.

Using the chain rule and the AST relationships, the above can be
shown to be equivalent to the following update rules in the θ
domain:

θt+1 ←θt − ηΩ2
t∇θJ(θt)− λη2θt

θt+1 ←θt − ηΩ2
t∇θJ(θt)− ληΩtsgn(θt)

, (10)

for the `2 and `1 cases, respectively.

Lee et al. (UCSD & ARM) SSGD for Unbiased DNN Pruning ICASSP 2020 10



The SSGD Algorithm Adopting λ = 0

Setting λ = 0 in both the `2 and `1 update rules leads to:

θt+1 ← θt − ηΩ2
t∇θJ(θt). (11)

It is the Sparsity-promoting Stochastic Gradient Descent (SSGD).

The term Ω2
t in (11) provides a weighting factor ω2

i,t to the
learning rate η for updating the corresponding parameter θi,t.
Typically, ω2

i,t is a function of
∣∣θi,t∣∣.

It is similar to the proportionate normalized least mean square
(PNLMS) algorithm [Duttweiler, 2000]. Instead of speeding up
convergence like that in the PNLMS, the purpose of SSGD is to
promote sparse solutions.
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Unbiasedness of SSGD

By adopting λ = 0, the underlying optimization problem of SSGD
is:

min
q

J(Ωtq), (12)

which actually transforms the original problem minθ J(θ) by
applying a change of coordinates via the AST.

Since Ωt is invertible, the problem of finding the θ which
minimizes J(θ) is equivalent to finding the q which minimizes
J(Ωtq). Therefore, the solution of (12) is guaranteed to also be a
solution of minθ J(θ), which is not true for minθ J(θ) + λG(θ)
with λ > 0. Therefore, the optimization (12) is unbiased.

Due to the sparsity-promoting ability of Ωt, if there are multiple
solutions to minθ J(θ), then iteratively solving minq J(Ωtq) will
tend to produce sparse choices of θ.
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Applying SSGD to DNN Compression

[Han et al., 2015] have proposed a 3-stage compression scheme:

i) learning important connections (e.g., using `1 regularization for
sparsity)

ii) pruning unimportant parameters by hard thresholding based on
magnitude

iii) fine-tuning the remaining ones to regain accuracy

We adopt the same scheme, using SSGD in stage i).
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Training Performance
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SSGD is able to converge toward the same loss as SGD,
supporting the argument that SSGD is unbiased as it finds
solutions to minθ J(θ).

The `1 regularized case, however, ends up at a higher loss due to
the bias introduced by a nonzero λ.
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Sparsity-Promoting Ability
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* Excess kurtosis serves as a measure of sparsity (the higher, the sparser). A
Gaussian distribution has an excess kurtosis of 0.

SSGD with a smaller p results in greater sparsity. Note that when
p = 2, SSGD reduces to the regular SGD, resulting in near 0
excess kurtosis.
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Pruning Results
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* ‘FT’ stands for ‘fine-tuned.’

Training with SSGD for stage i), the test accuracy remains the
highest after hard thresholding in stage ii) (solid lines), and
regains most accuracy after fine-tuning in stage iii) (dashed lines).
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Comparison with Existing Pruning Approaches

Table: Comparison of sparsification results.

Model Method Accuracy % of nonzeros

MLP

Original 98.62% 100.0
Net-Trim [Aghasi et al., 2017] 97.70% 30.5

Iter. Reweight. [Jiang et al., 2019] 97.46% 14.8
Proposed 98.39% 3.7

CNN-3

Original 77.44% 100.0
Net-Trim [Aghasi et al., 2017] 75.92% 17.8

Iter. Reweight. [Jiang et al., 2019] 74.17% 7.9
Proposed 74.54% 5.1

* MLP: multi-layer perceptron

* Both MLP and CNN-3 are models used in [Jiang et al., 2019] on MNIST and
CIFAR-10, respectively
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Conclusion

We proposed SSGD, an unbiased learning algorithm for DNN
pruning.

The SSGD is based on the iterative reweighting frameworks and
AST reparameterization, allowing the adoption of a zero
regularization coefficient λ while incorporating sparsity.

The sparsification ability of SSGD has been demonstrated on
image classification tasks and shown to outperform existing
methods on the MNIST and CIFAR-10 datasets.
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Practical Considerations

In practice, we find that normalizing the Ω2
t term helps stabilize

SSGD. We thus propose the practical SSGD update rule:

θt+1 ← θt − ηSt∇θJ(θt), (13)

where St = diag{si,t}, referred to as the sparsity-promoting matrix,
is the normalized version of Ω2

t :

si,t =
ω2
i,t

1
|I(k)|

∑
j∈I(k)

ω2
j,t

, for i ∈ I(k), (14)

where I(k) denotes the index set of parameters of layer k, θi,t is in
layer k, and |I(k)| is the cardinality of I(k).
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The SSGD Algorithm

Algorithm 1 summarizes SSGD which can be implemented using
standard deep learning libraries without much effort.

Algorithm 1: The proposed SSGD algorithm for learning sparse
DNN connections. ωt and st denote the vectors consisting of the
diagonal elements of Ωt and St, respectively. � denotes element-
wise multiplication.

1 Input: η: learning rate, dt: training data at timestep t, and the
choice of the diversity measure

2 Output: θt: estimated model parameters
3 Initialize: θ0

4 for t = 0, 1, 2... do
5 Compute scaling factors: ωt according to the specified diversity

measure
6 Compute sparsity-promoting factors: st by normalizing ωt
7 Update parameters: θt+1 ← θt − η · st �∇θJ(θt, dt)

8 end for
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Applying SSGD to DNN Compression

[Han et al., 2015] have proposed a 3-stage compression scheme:
i) learning important connections (e.g., using `1 regularization for

sparsity)
ii) pruning unimportant parameters by hard thresholding based on

magnitude
iii) fine-tuning the remaining ones fine-tuning the remaining ones to

regain accuracy

* We adopt the same scheme, using SSGD in stage i).

In [Han et al., 2015], it is observed that, `1 regularization leads to
sparser networks after stage i), but the network loses significant
accuracy after stage ii), and is not able to recover from this
accuracy drop even after stage iii).

The authors posit that the discrepancy between using `1
regularization during stage i) and not using it during stage iii)
leads to poor performance. SSGD circumvents such issues because
it finds (sparse) solutions to minθ J(θ) directly.
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Experimental Setup

CNN-1 on MNIST database [LeCun et al., 1998] : We define a
model that has 2 CONV layers followed by 3 FC layers for this
task. Max pooling is performed. A ReLU activation is adopted for
all layers and we use cross-entropy for J(θ).

CNN-2 on CIFAR-10 database [Krizhevsky and Hinton, 2009] : We
define a more complicated model with 6 CONV layers followed by
3 FC layers for this task. Max pooling is performed. Batch
normalization [Ioffe and Szegedy, 2015] and dropout
[Srivastava et al., 2014] are appropriately used for showing their
compatibility with SSGD. ReLU activation is adopted for all layers
and we use cross-entropy for J(θ).

* CNN: convolutional neural network CONV: convolutional
FC: fully-connected ReLU: rectified linear unit
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