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Abstract
Objective:
• Develop a new masking strategy to improve time-frequency

(T-F) mask-based neural beamforming algorithms for mul-
tichannel speech enhancement (SE)

Methods:
• Propose the Snapshot Matching Mask (SMM) that aims

to minimize the distance between the predicted and the true
signal snapshots, leading to a more systematic way of esti-
mating the speech and noise power spectral density (PSD)
matrices that are used to derive beamformer weights

Results
• SMM demonstrates improved SE performance compared

to existing masking approaches (e.g., the ideal binary mask
(IBM) and ideal ratio mask (IRM)) that lack direct connec-
tion to PSD estimation for mask-based neural beamforming

1 Background

1.1 Problem Formulation

• Scenario: one desired speech source and several interfering
noise signals in a reverberant environment

• Signal model: T-F domain processing using the short-time
Fourier transform (STFT) assuming an additive noise model:
– Let f, t stand for the frequency and time frame indexes, the
i-th microphone noisy signal STFT Xi ∈ CF×T of an N -
microphone array can be expressed as:

Xi(f, t) = Si(f, t) + Vi(f, t), (1)

∀f, t, where Si(f, t) and Vi(f, t) are the speech and noise
components received by microphone i, respectively.

• Goal: to recover the speech component Sr ∈ CF×T of a refer-
ence microphone r ∈ {1, . . . , N} given the noisy X1, . . . ,XN

1.2 T-F Mask-Based Neural Beamformer
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Figure 1: T-F mask-based neural beamformer: T-F mask estimation DNN
(learning-based) followed by statistical beamformer (model-based).

• The T-F mask estimation DNN is utilized to predict some
pre-defined T-F masks that are subsequently leveraged to
obtain an estimate of Φs(f, t) = E[s(f, t)sH(f, t)] and
Φv(f, t) = E[v(f, t)vH(f, t)], the speech and noise PSD ma-
trices, where s(f, t) = [S1(f, t), . . . , SN(f, t)]

T and v(f, t) =
[V1(f, t), . . . , VN(f, t)]

T are the speech and noise snapshots.

1.3 Issues with Existing Masks

• E.g., the speech PSD can be estimated by recursive averaging:

Φs(f, t) = λsΦs(f, t− 1) +Ms(f, t)x(f, t)x
H(f, t), (2)

where λs ∈ (0, 1] is the forgetting factor and Ms(f, t) is the
DNN output mask to predict, e.g., the IBM and IRM:

M IBM
s (f, t) =

1, if |Sr(f,t)|
|Vr(f,t)| > C

0, otherwise
, M IRM

s (f, t) =
|Sr(f, t)|
|Xr(f, t)|

.

(3)
• However, the derivation of these masks is not based on multi-

channel characteristics but on single-channel SE solutions. As
a result, they lack direct relation to PSD matrix estimation

2 Proposed Method

2.1 SMM Estimation Framework

Ms(f, t) = argmin
M∈C,|M |≤1

L(Mx(f, t), s(f, t)), (4)

∀f, t, where L(·, ·) is some measure of the difference between the
estimated snapshot Mx(f, t) and clean speech snapshot s(f, t).
• We can see that the T-F mask Ms ∈ CF×T given by (4) leads

to an estimate of the speech signal snapshot s(f, t), i.e.,

ŝ(f, t) ≜ Ms(f, t)x(f, t) ≈ s(f, t), (5)

∀f, t. By matching the snapshots, we can better estimate
Φs(f, t) = E[s(f, t)sH(f, t)] by leveraging

ŝ(f, t)ŝH(f, t) ≈ s(f, t)sH(f, t). (6)

Snapshot Matching Loss for optimizing (4):

L(ŝ(f, t), s(f, t)) = 1

N

N∑
i=1

0.7(|Ŝi(f, t)|0.3 − |Si(f, t)|0.3)2

+0.3||Ŝi(f, t)|0.3ej∠Ŝi(f,t) − |Si(f, t)|0.3ej∠Si(f,t)|2.

(7)

PSD Updates with SMM:

Φs(f, t) =λsΦs(f, t− 1) + ŝ(f, t)ŝH(f, t)

=λsΦs(f, t− 1) + |Ms(f, t)|2x(f, t)xH(f, t).
(8)

2.2 SMM Properties

• SMM simultaneously considers all channels together via a
complex-valued masking scheme to directly minimize the dis-
tance between the estimated and the true signal snapshots.

• The magnitude constraint, i.e., |Ms(f, t)| ≤ 1,∀f, t, leads to
the value of |Ms(f, t)|2 in the PSD update (2) lying in [0, 1]
and can be interpreted as the speech presence probability (SPP)
aligning with other T-F masks.

• Adopting the complex-valued mask for also manipulating the
phase components of signal snapshots, SMM can better ex-
ploit spatial characteristics of multichannel signals, as com-
pared to approaches like [1] that utilize real-valued T-F masks
pre-defined on a single reference microphone.
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Figure 2: Proposed SMM estimation network based on using a complex-
valued U-Net architecture. “Mag. Tanh Bound” realizes the magnitude con-
straint within the unit circle in (4). “Snapshot Matching Loss” computes the
difference between the estimated and true signal snapshots based on (7).

3 Simulation Results

Table 1 compares the multichannel Wiener filter (MWF) beam-
former outcomes of using the PSD matrices estimated based on
oracle entities (to observe performance upper bound).

Table 1: SE performance of MWF using PSD estimated based on oracle IBM,
IRM, and speech snapshots (SS). There is apparent performance gap between
the results of using oracle IBM and IRM and the results of using oracle SS.

# Mic
PESQ SSNR

Oracle Oracle Oracle Oracle Oracle Oracle
IBM IRM SS IBM IRM SS

2 1.42 1.68 1.78 2.02 4.47 4.85
4 1.51 1.85 1.99 2.42 5.25 5.71
8 1.87 2.05 2.16 4.04 5.56 5.74

Next, we evaluate the proposed SMM for better PSD estimation
of T-F mask-based MWF in Figure 3. The SMM significantly
outperforms IBM and IRM for settings. Such improvement could
be attributed to the better PSD estimation of SMM over the IBM
and IRM as revealed in Table 2.
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Figure 3: SE performance of T-F mask-based MWF using PSD matrices es-
timated from IBM, IRM, (ubd: unbounded) SMM, and SMM.

Table 2: Average Frobenius distance between the mask-based speech PSD
estimate and the PSD estimated by using oracle speech snapshots for different
masking schemes. One can see that the resulting distance of SMM-based PSD
estimate is smallest as compared to the IBM- and IRM-based estimates.

# Mics IBM IRM SMM (ubd) SMM

2 48.88 42.31 38.60 38.07
4 144.60 133.57 75.69 75.65
8 185.81 169.19 152.98 147.52

We also present the estimated IRM and SMM for a noisy signal
in Figure 4, evaluation on other two datasets in Table 3, and com-
parison with several existing deep learning-based SE methods in
Table 4, to demonstrate the effectiveness of SMM.
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Figure 4: Estimated IRM and SMM of a noisy utterance. The estimated SMM
shows a smoother distribution of the speech while the IRM is much noisier.

Table 3: PESQ comparison of masking schemes on other datasets. “(R)” and
“(C)” stand for using real or complex U-Net, respectively.

Dataset Noisy IBM(R) IBM(C) IRM(R) IRM(C) SMM

AVSpeech+Real RIRs 1.40 1.59 1.57 1.64 1.61 1.73
CHiME-3 1.27 1.83 1.85 2.18 2.18 2.23

Table 4: Comparison with existing deep learning-based SE methods.

Methods Type # Params PESQ STOI

Noisy - - 1.40 0.598
Conv-TasNet [2] Single-channel 8.7M 1.64 0.638
DCUnet [3] Single-channel 7.6M 1.62 0.631
FaSNet [4] Multichannel 2.8M 1.71 0.652
SMM-based MWF (ours) Multichannel 1.3M 1.73 0.681

4 Conclusion
We proposed the SMM framework for improved PSD estimation
in mask-based neural beamforming, which directly minimizes the
distance between the estimated and true signal snapshots. Simu-
lations show the potential of SMM to overcome the limitation of
existing T-F masks that lack direct connection to PSD estimation.
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