# An MVDR-Embedded U-Net Beamformer for Effective and Robust Multichannel Speech Enhancement

# Ching-Hua Lee<sup>1</sup>, Kashyap Patel<sup>2</sup>, Chouchang Yang<sup>1</sup>, Yilin Shen<sup>1</sup>, Hongxia Jin<sup>1</sup> <sup>1</sup>Samsung Research America

<sup>2</sup>Department of ECE, University of Texas at Dallas

### **Contact Information:**

Samsung Research America 665 Clyde Ave, Mountain View, CA 94043

Email: chinghua.l@samsung.com





### Abstract

### **Objective:**

• Develop a new deep neural network (DNN) model for achieving *effective* and *robust* multichannel speech enhancement (SE) simultaneously

### **Methods:**

#### **Type II: T-F Mask-Based Neural Beamformer** 2.3

• The DNN  $f_{\theta}(\cdot)$  is used to predict T-F mask  $\mathbf{M}_s, \mathbf{M}_v \in$  $\mathbb{C}^{F \times T}$  that represent the speech and noise T-F pattern:

$$\min_{\theta} \mathcal{L}\left(\mathbf{M}_{\gamma}, \hat{\mathbf{M}}_{\gamma} = f_{\theta}(\mathbf{X}_{1}, \dots, \mathbf{X}_{N})\right), \quad \gamma = \{s, v\},$$

#### Experiments 4

We compare the SE performance of the following 3 cases based on using the same backbone (1.27M) U-Net model:

i) **Direct BF (Figure 1 (a)):** the U-Net is trained to directly estimate the clean speech

- Propose an intra-MVDR embedded U-Net to incorporate the merits of two popular DNN-based beamforming method types:
- Type I: DNN direct beamformer (effectiveness in seen conditions)
- Type II: Time-frequency (T-F) mask based statistical beamformer (*robustness* in unseen conditions)

### **Results:**

• The proposed SE model demonstrates improved performance which are not achievable by simply enlarging the baseline SE network of Type I or Type II

## Overview



(3)which are subsequently used to assist conventional beamformers, e.g., MVDR, based on estimating signal & noise statistics  $\mathbf{S} = g_{\text{mvdr}}([\mathbf{X}_1, \dots, \mathbf{X}_N], [\mathbf{M}_s, \mathbf{M}_v])$ 

• Generalize better to unseen acoustic and noise conditions as the DNN only has to estimate the intermediate masks

• However, the overall SE performance is often bounded by the later statistical component (MVDR)

### **Proposed Model** 3

#### **Intra-MVDR module within direct BF network** 3.1

The proposed model features intra-MVDR modules embedded in the U-Net direct BF (Figure 2). Here, MVDR is integrated as a network module and all the learnable parameters are jointly optimized for clean signal reconstruction

#### **Exploiting MVDR-filtered signals at all mics** 3.2

Each intra-MVDR module consists of:

[T-F mask estimation network  $\rightarrow$  mask-based MVDR] as Figure 3 illustrates, and performs MVDR for ALL mics ii) Mask-based MVDR (Figure 1 (b)): the U-Net is trained to estimate the speech and noise ideal ratio masks

iii) Direct BF w/ intra-MVDR (Figure 1 (c)): the proposed intra-MVDR module(s) embedded in the U-Net direct BF

### **Datasets:**

• CHiME-3 (for results in Table 1, Figure 4, Table 2)

• AVSpeech + Pyroomacoustics (for results in Table 3)

### **Results:**

**Table 1:** Comparison of different multichannel SE schemes. For the
 direct BF and mask-based MVDR approaches we also show results for a larger (1.62M) U-Net models. For our method we present results for incorporating the intra-MVDR modules at different levels into the base (1.27M) U-Net model.

| Methods                        |                    | # Params            | PESQ                 | STOI                    | SNR                     |
|--------------------------------|--------------------|---------------------|----------------------|-------------------------|-------------------------|
| Direct BF                      | (base)             | 1.27M               | 2.39                 | 0.962                   | 17.76                   |
|                                | (larger)           | 1.62M               | 2.44                 | 0.965                   | 18.31                   |
| Mask-based MVDR<br>Oracle MVDR | (base)<br>(larger) | 1.27M<br>1.62M<br>- | 2.00<br>2.01<br>2.01 | 0.966<br>0.966<br>0.970 | 16.67<br>16.81<br>18.42 |
| Direct BF w/ intra-MVDR        | Level 1            | 1.30M               | 2.55                 | 0.970                   | 18.93                   |
|                                | Levels 1,2         | 1.38M               | 2.57                 | 0.973                   | 20.43                   |
|                                | Levels 1,2,3       | 1.47M               | 2.60                 | <b>0.974</b>            | <b>20.80</b>            |
|                                | Levels 1,2,3,4     | 1.56M               | <b>2.64</b>          | <b>0.974</b>            | 20.63                   |

**Figure 1:** Illustration of different multichannel SE systems: (a) DNN direct beamformer; (b) DNN followed by statistical beamformer (e.g., MVDR); (c) MVDR-embedded DNN beamformer (proposed).

### Background

- **Problem Formulation of Multichannel SE**
- Scenario: one desired speech source and several interfering noise signals in a reverberant environment
- Signal model: T-F domain processing using the shorttime Fourier transform (STFT) assuming an additive noise model:
- -N-mic array, the *i*-th microphone noisy signal STFT  $\mathbf{X}_i \in \mathbb{C}^{F \times T}$  can be expressed as:

 $\mathbf{X}_i = \mathbf{S}_i + \mathbf{V}_i,$ 

(1)

 $\forall i \in \{1, \ldots, N\}$ , where  $\mathbf{S}_i \in \mathbb{C}^{F \times T}$  and  $\mathbf{V}_i \in \mathbb{C}^{F \times T}$ are the speech and noise components at microphone *i*, respectively.

• Goal: to recover the speech component  $S = S_r$  of a reference microphone  $r \in \{1, \ldots, N\}$  given the noisy  $\mathbf{X}_1,\ldots,\mathbf{X}_N$ 

#### Multi-scale beamforming with intra-MVDR 3.3

Intra-MVDR naturally fits into a multi-scale design within the U-Net to better exploit coarse- and fine-grained spatial features from various resolutions

#### **Combine MVDR-filtered signals at final output** 3.4

The MVDR-filtered signals  $Z_i$  are included in the final filtering stage at the model output to help improve signal reconstruction







Figure 4: Visualization of SE outputs. The proposed method has less residual noise while preserving more speech components, achieving the best quality.

### **Table 2:** Comparison with existing SE model for ASR.

|             |          | WER / CER (%) |             |              |  |
|-------------|----------|---------------|-------------|--------------|--|
| Front-ends  | # Params | ASR Model 1   | ASR Model 2 | ASR Model 3  |  |
| Unprocessed | -        | 7.40 / 4.25   | 9.18 / 5.64 | 16.75 / 8.28 |  |
| FaSNet      | 2.76M    | 5.21 / 2.63   | 5.65 / 3.41 | 10.20 / 4.87 |  |
| Proposed    | 1.56M    | 3.81 / 1.96   | 3.54 / 2.33 | 6.31 / 3.06  |  |

 
 Table 3: PESQ scores for comparing effectiveness on test data with
 seen room/noise conditions and robustness to unseen conditions.

- **Type I: DNN direct beamformers (direct BF)** 2.2
- The DNN  $f_{\theta}(\cdot)$  is utilized to *imitate the beamforming pro*cesses for directly predicting the clean speech S, trained by minimizing some clean signal reconstruction loss:

$$\min_{\theta} \quad \mathcal{L}\left(\mathbf{S}, \hat{\mathbf{S}} = f_{\theta}(\mathbf{X}_{1}, \dots, \mathbf{X}_{N})\right)$$
(2)

- Effective as the model learns the direct noisy-clean mapping from data
- May not generalize adequately to unseen noise types and acoustic conditions not presented in training data

### Figure 2: The proposed MVDR-embedded U-Net beamformer for SE.



Figure 3: The proposed intra-MVDR module (Level 1) in details.

| Methods         | # Params | Seen Cond. | Unseen Cond |
|-----------------|----------|------------|-------------|
| Noisy           | -        | 1.21       | 1.22        |
| Mask-based MVDR | 1.62M    | 1.71       | 1.55        |
| Direct BF       | 1.62M    | 2.02       | 1.66        |
| Proposed        | 1.56M    | 2.13       | 1.76        |

#### 5 Conclusion

We presented a novel integration of DNN direct beamforming and mask-based statistical beamforming by introducing the intra-MVDR module embedded in a U-Net design. The new model encompasses the merits of the two method types, efficiently improving SE effectiveness and robustness to various conditions.