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Abstract
Objective:

e Develop a new deep neural network (DNN) model for
achieving effective and robust multichannel speech
enhancement (SE) simultaneously

Methods:

e Propose an intra-M VDR embedded U-Net to incor-
porate the merits of two popular DNN-based beam-
forming method types:

—Type I. DNN direct beamformer (effectiveness in
seen conditions)

— Type II: Time-frequency (T-F) mask based statisti-
cal beamformer (robustness 1n unseen conditions)

Results:

e The proposed SE model demonstrates improved per-
formance which are not achievable by simply enlarg-
ing the baseline SE network of Type I or Type I1

1 Overview
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Figure 1: Illustration of different multichannel SE systems: (a) DNN
direct beamformer; (b) DNN followed by statistical beamformer (e.g.,
MVDR); (¢) MVDR-embedded DNN beamformer (proposed).
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2 Background

2.1 Problem Formulation of Multichannel SE

e Scenario: one desired speech source and several interfer-
Ing noise signals 1n a reverberant environment

e Signal model: T-F domain processing using the short-
time Fourier transform (STFT) assuming an additive
noise model:

— N-mic array, the ¢-th microphone noisy signal STFT
X; € C"*T can be expressed as:

Xi=8;+V, (1)

Vi € {1,...,N}, where S; € C'*! and V; € CI'*?
are the speech and noise components at microphone ¢,

respectively.
e Goal: to recover the speech component S = S, of a
reference microphone r € {1,..., N} given the noisy
X, ..., Xy

2.2 Type I: DNN direct beamformers (direct BF)

* The DNN fy(-) is utilized to imitate the beamforming pro-
cesses for directly predicting the clean speech S, trained
by minimizing some clean signal reconstruction loss:

min £ (8,8 = fu(X1, .., Xy)) 2)

 Effective as the model learns the direct noisy-clean map-
ping from data

* May not generalize adequately to unseen noise types and
acoustic conditions not presented in training data
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2.3 Type 1lI: T-F Mask-Based Neural Beamformer

* The DNN fy(-) is used to predict T-F mask M , M, €
C#*T that represent the speech and noise T-F pattern:

m@in L.’(MVaM’Y:fQ(le"'aXN)) ) 7:{372}}7
(3)

which are subsequently used to assist conventional beam-
formers, e.g., MVDR, based on estimating signal & noise

statistics S = gmvar(| X1, - - ., Xnl, [Ms, M,|)

e Generalize better to unseen acoustic and noise conditions
as the DNN only has to estimate the intermediate masks

 However, the overall SE performance is often bounded
by the later statistical component (MVDR)

3 Proposed Model

3.1 Intra-MVDR module within direct BF network

The proposed model features intra-M VDR modules embed-
ded in the U-Net direct BF (Figure 2)). Here, MVDR is inte-
grated as a network module and all the learnable parameters
are jointly optimized for clean signal reconstruction

3.2 Exploiting MVDR-filtered signals at all mics

Each intra-M VDR module consists of:
| T-F mask estimation network — mask-based MVDR]
as Figure 3| illustrates, and performs MVDR for ALL mics

3.3 Multi-scale beamforming with intra-M VDR

Intra-M VDR naturally fits into a multi-scale design within
the U-Net to better exploit coarse- and fine-grained spatial
features from various resolutions

3.4 Combine MVDR-filtered signals at final output

The MVDR-filtered signals Z; are included in the final fil-
tering stage at the model output to help improve signal re-
construction
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Figure 2: The proposed MVDR-embedded U-Net beamformer for SE.
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Figure 3: The proposed intra-M VDR module (Level 1) in details.
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4 Experiments

We compare the SE performance of the following 3 cases
based on using the same backbone (1.27M) U-Net model:

i) Direct BF (Figure 1/ (a)): the U-Net is trained to directly
estimate the clean speech

i1) Mask-based MVDR (Figure |1/ (b)): the U-Net is trained
to estimate the speech and noise 1deal ratio masks

ii1) Direct BF w/ intra-M VDR (Figure [1/(c)): the proposed
intra-M VDR module(s) embedded 1n the U-Net direct BF

Datasets:
* CHiME-3 (for results in Table |1, Figure 4, Table
* AVSpeech + Pyroomacoustics (for results in Table

Results:

Table 1: Comparison of different multichannel SE schemes. For the
direct BF and mask-based MVDR approaches we also show results for
a larger (1.62M) U-Net models. For our method we present results for

incorporating the intra-MVDR modules at different levels into the base
(1.27M) U-Net model.

Methods # Params PESQ STOI SNR
. (base) 1.27M 239 0962 17.76
Drrect BE (larger) 1.62M 244 0965 1831
(base) 127M 200 0966 16.67

Mask-based MVDR (larger) 1.62M  2.01 0966 16.81
Oracle MVDR i 201 0970 18.42
Level 1 1.30M 255 0970 18.93

Levels 1,2 138M 257 0973 2043

Direct BF w/ intra-M VDR Levels 1.2.3 1.47M 2760 0.974 20.80

Levels 1,2,34  1.56M 2.64 0974 20.63

Noisy Clean

N

PESQ: 1.16

w

Frequency (kHz)
N

0.5 1.0 1.5 2.0
Time (sec) Time (sec)

Enhanced (Mask-based MVDR)
PESQ: 1.54

Enhanced (Direct BF)
PESQ: 1.78

Enhanced (Proposed)
PESQ: 2.24

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0
Time (sec) Time (sec) Time (sec)

Figure 4: Visualization of SE outputs. The proposed method has less
residual noise while preserving more speech components, achieving
the best quality.

Table 2: Comparison with existing SE model for ASR.

WER / CER (%)
Front-ends  # Params ASR Model 1 ASR Model 2 ASR Model 3
Unprocessed - 7.40/4.25 9.18/5.64  16.75/8.28
FaSNet 2.76M 5.21/2.63 5.65/3.41 10.20/4.87

Proposed 1.56M  3.81/1.96 3.54/2.33 6.31/3.06

Table 3: PESQ scores for comparing effectiveness on test data with
seen room/noise conditions and robustness to unseen conditions.

Methods # Params Seen Cond. Unseen Cond.
Noisy - 1.21 1.22
Mask-based MVDR 1.62M 1.71 1.55
Direct BF 1.62M 2.02 1.66
Proposed 1.56M 2.13 1.76

5 Conclusion

We presented a novel integration of DNN direct beamform-
ing and mask-based statistical beamforming by introduc-
ing the intra-M VDR module embedded in a U-Net design.
The new model encompasses the merits of the two method
types, efficiently improving SE effectiveness and robust-
ness to various conditions.
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