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Abstract
Objective:
• Develop a novel domain adaptation technique for

speech enhancement (SE) to mitigate performance
degradation due to mismatch between source and tar-
get domains, where we only have access to noisy data
in the target domain

• Explore the idea of utilizing Self-Supervised Learn-
ing (SSL) speech representations for domain adapta-
tion in SE

Method:
• Propose the Self-Supervised Representation based

Adaptation (SSRA):

– leveraging SSL speech models (e.g., wav2vec) pre-
trained with large amount of raw speech data which
extract representations rich in phonetic & acoustics
information

– exploiting decent separability of clean and noisy
speech in the SSL space

– utilizing a novel similarity-based loss in the SSL
space to handle unpaired data

Results:
• The proposed SSRA framework demonstrates the po-

tential of exploiting SSL representations for adapting
SE models to new domains

1 Overview
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Figure 1: Representations extracted by SSL (wav2vec) encoder. (Left)
It can be seen that noisy and clean data are well-separated in the SSL
latent space. (Right) When the clean data of the target domain are
not available, we approximate the exact noisy-clean mapping for SE
through ensemble mapping.

2 Unsupervised Domain Adaptation for SE

• General SE: To find an estimator f (·;θ) that maps the
noisy utterance x ∈ X into its clean reference y ∈ Y ,
where X and Y denote the spaces of noisy and clean
speech, respectively

• Scenario:
– Source domain: noisy-clean speech pairs {(xS

i ,y
S
i )}

NS
i=1

of a source domain distribution S(x,y) available for
training

– Target domain: a new domain following the distribu-
tion T (x,y) with only noisy data {xT

i }
NT
i=1 accessible

for training

• Issue: Domain shift caused by unseen environments
leads to an adequate SE model θS trained on source do-
main S suffering from performance degradation in target
domain T

• Goal: To seek an adapted version of the SE model θT
that mitigates such degradation by leveraging target do-
main noisy data

3 Proposed Method

• Main idea: to take advantage of SSL representations for
guiding SE model adaptation to the target domain, based
on:

– decent separability of clean noisy speech in the SSL
space

– rich acoustic and phonetic information in SSL represen-
tations

• Notably, the SSL encoder h(·) is utilized only during
training and does not increase the complexity in inference
time
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Figure 2: Illustration of the proposed SSRA framework where the SE
model is trained by jointly minimizing two loss terms.

3.1 The SSRA framework

Given the training data of the source domain {(xS
i ,y

S
i )}

NS
i=1

and target domain {xT
i }

NT
i=1, our framework aims to seek an

optimal parameter set θ∗ (in some sense) for the SE model
f (·;θ) by:

min
θ

Lrec + Lssra = min
θ

1

NS

NS∑
i=1

D1(f (x
S
i ;θ),y

S
i )︸ ︷︷ ︸

Lrec:Rec Loss

+
λ

NSNT

NT∑
i=1

NS∑
j=1

wijD2(h(f (x
T
i ;θ)), h(y

S
j ))︸ ︷︷ ︸

Lssra:SSRA Loss

,

(1)

where D1(·, ·) and D2(·, ·) are some distance measures and
λ > 0 for weighting the two loss terms

• The reconstruction loss: various choices for the distance
metric D1(·, ·) in Lrec (e.g., MSE, SI-SNR)

• The SSRA loss: we present an effective choice for
D2(·, ·) with the negative cosine similarity imposed on
temporally averaged SSL representations:

D2(h(f (x
T
i ;θ)), h(y

S
j )) = −cossim(h̄(f (xT

i ;θ)), h̄(y
S
j )),
(2)

where h̄(·) stands for the averaged SSL representation
over time frames. For the weighting term wij, we pro-
pose to use:

wij = 0.5 ∗ (cossim(h̄(xT
i ), h̄(x

S
j )) + 1), (3)

which ranges in [0, 1] and is proportional to the similarity
of the comparing target and source domain noisy utter-
ances

• Mini-batch optimization is performed for (1) in prac-
tice. In every epoch, datasets are reshuffled to increase
data pairing diversity of the target and source domains

4 Experiments

Datasets: We validate the proposed SSRA for domain
adaptation of single-channel SE models following the setup
in [1]:

• Source domain: CHiME-3 dataset [2] (on the 5-th chan-
nel)

• Target domain: VoiceBank+DEMAND dataset [3]

Models:

• SSL model: pre-trained wav2vec large from [4]

• SE Network 1: a GRU based SE network from [5] (for
results in Table 1, Table 2 and Figure 3)

• SE Network 2: a BLSTM based SE network from [1] (for
Table 3 results)

Results:

Table 1: Performance on target domain (VoiceBank+DEMAND).

Methods PESQ SI-SNR CSIG CBAK COVL

Noisy 1.97 8.46 3.35 2.44 2.63
SE-unadapted 2.43 17.22 3.09 3.15 2.75
SE-SSRA 2.56 17.31 3.37 3.15 2.94
SE-SSRA + extra noisy data 2.61 17.43 3.51 3.17 3.02

Table 2: Performance on source domain (CHiME-3).

Methods PESQ SI-SNR CSIG CBAK COVL

Noisy 1.27 7.51 2.61 1.92 1.88
SE-unadapted 1.70 12.58 3.04 2.53 2.34
SE-SSRA 1.73 12.69 3.09 2.54 2.38
SE-SSRA + extra noisy data 1.74 12.93 3.11 2.57 2.40

Figure 3: t-SNE analysis on wav2vec encoded feature maps.

Table 3: SE adaptation comparison to domain adversarial training
(DAT) based approach on target domain (VoiceBank+DEMAND).

Methods Training data PESQCSIGCBAKCOVLSSNR

Noisy - 1.97 3.35 2.44 2.63 1.68

Wiener none 2.22 3.23 2.68 2.67 5.07

SE-unadapted source dom. labeled 2.12 3.38 2.46 2.66 1.76

SE-DAT [1] source dom. labeled + 2.26 3.72 2.77 2.98 4.11
SE-SSRA (ours) target dom. unlabeled 2.46 3.53 3.10 2.98 7.76

5 Conclusion

We presented SSRA, a novel domain adaptation frame-
work for SE based on using SSL representations. We ex-
plored the possibility of exploiting the nice properties of
SSL features for adapting the SE model to new domains
and demonstrated its effectiveness.
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