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Abstract
Objective:
• Develop a new deep learning-based multichannel speech

enhancement (SE) model for improved robustness against
spatially uncertain target speech scenarios

Methods:
• Propose the Align-and-Filter Network (AFnet) featuring a

two-stage design inspired by the alignment-followed-by-
filtering principle from classical signal processing

Results
• By leveraging relative transfer functions (RTFs) as the

training target for spatial alignment, AFnet learns inter-
pretable directional features to better exploit spatial sepa-
rability of sound sources for improved SE performance

1 Overview
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Figure 1: Illustration of different multichannel SE systems. (a) Typical deep
learning-based methods directly model the noisy-to-clean speech mapping.
(b) Classical signal processing approaches perform SE as two sub-tasks. (c)
Our framework models both alignment and filtering processes with deep net-
works, achieved by supervising alignment based on relative transfer functions
(RTFs).

2 Background

2.1 Problem Formulation of Multichannel SE

• Scenario: one desired speech source and several interfering
noise signals in a reverberant environment

• Signal model: Time-frequency domain processing using the
short-time Fourier transform (STFT) assuming an additive
noise model:
–N -mic array, the i-th microphone noisy signal STFT Xi ∈
CF×T can be expressed as:

Xi = Hi ⊙ S0 +Vi = Si +Vi, (1)

where Si ≜ Hi ⊙ S0 ∈ CF×T is the speech component re-
ceived by microphone i, ⊙ denotes element-wise product,

Hi ∈ CF×T is the acoustic transfer function between the
speech source S0 ∈ CF×T and microphone i, and Vi ∈ CF×T

is the noise component captured by microphone i.

• Goal: to recover the speech component S = Sr of a reference
microphone r ∈ {1, . . . , N} given the noisy X1, . . . ,XN

2.2 Beamforming in STFT Domain

Multichannel SE systems usually perform spatial filtering, or
beamformig, through proper linear combination of the micro-
phone signals to obtain the enhanced signal Ŝ ∈ CF×T :

Ŝ =

N∑
i=1

Wi ⊙Xi, (2)

where Wi ∈ CF×T is the set of beamformer filters of mic i. To
derive Wi’s, traditional signal processing algorithms typically
employ a spatial alignment stage by estimating the temporal
(phase) and level (magnitude) differences among the received
speech components Si’s. However, the notion of such spatial
alignment is often overlooked in the SE deep network design.

3 Proposed Method

3.1 AFnet

• Our AFnet interprets multichannel SE process as:

Ŝ =

N∑
i=1

(Fi ⊙Ai)︸ ︷︷ ︸
beamformer Wi

⊙Xi =

N∑
i=1

Fi ⊙ (Ai ⊙Xi)︸ ︷︷ ︸
aligned signals Zi

. (3)

This suggests that the beamformer weights Wi in (2) be de-
composed into spatial alignment (Ai) and filtering (Fi) units.

• The process is realized by the sequential masking scheme using
two deep net modules, Align Net and Filter Net, as depicted in
Figure 2:
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Figure 2: AFnet based on the “align-then-filter” principle for better capturing
spatial characteristics of speech data rich in directional variety. We highlight
(in green) the key components that contribute to our SE improvement: RTF-
based supervision for spatial alignment and sequential masking design.

3.2 Learning the Alignment Process

• We propose the optimization for training the Align Net by:

min Lrtf =
1

N

N∑
i=1

∥Ai − H̃i∥2F , (4)

where the alignment mask Ai estimates the speech RTF H̃i

defined between microphone i and reference microphone r:

H̃i ≜ Hr ⊘Hi = (Hr ⊙ S0)⊘ (Hi ⊙ S0) = Sr ⊘ Si. (5)

• Ideally, if Ai = H̃i we get the perfectly aligned signal as:

Zi = H̃i ⊙Xi = (Sr ⊘ Si)⊙ (Si +Vi) = Sr + Ṽi, (6)

where each Zi contains the same speech component Sr inde-
pendent of the microphone index i.

3.3 Learning the Filtering Process

• As the goal is to reconstruct the clean speech at the final out-
put, we train the entire AFnet (i.e., Align Net + Filter Net) by
minimizing the reconstruction loss between S and Ŝ:

min Lrec = 0.3∥Ŝ0.3 − S0.3∥2F + 0.7∥|Ŝ|0.3 − |S|0.3∥2F . (7)

4 Simulation Results

Figure 3: SE comparison of different RTF alignment schemes for AFnet train-
ing. We see that “w/ RTF loss” achieves considerable improvements in all
settings, suggesting the advantages of performing spatial alignment.

Figure 4: t-SNE of learned alignment masks for signals coming from three
different locations (loc 1,2,3). AFnet trained with RTF alignment loss results
in separate clusters, corresponding to successively learned spatial separability.

Table 1: Generalization to unseen and dynamic acoustic environments.

Method
Unseen rooms Time-varying location

PESQ STOI SSNR PESQ STOI SSNR

AFnet w/o RTF loss 1.77 0.712 4.93 1.71 0.700 4.52
AFnet 1.95 0.740 5.47 1.82 0.720 5.00

PESQ: 1.10

PESQ: 2.79PESQ: 1.73

Figure 5: Comparing the waveforms of W-Net (an alignment-unaware model
representing Figure 1 (a)) and AFnet (8-mic), we can see that AFnet suc-
cessfully removes the noise-only segment in the beginning of the utterance
while W-Net fails to, as indicated in the red boxes. By inspecting the spec-
trograms, we notice that some detailed speech structures are highly distorted
with W-Net, while AFnet preserves more speech structures, as marked by yel-
low boxes.

5 Conclusion

We presented AFnet, a multichannel SE deep learning frame-
work that exploits the “align-then-filter” notion to handle speech
sources with spatial uncertainty by leveraging the RTF, an essen-
tial component in many signal processing-based algorithms. Our
findings suggest that alignment indeed plays an important role in
deep learning-based approaches, especially for spatially diverse
speech scenarios.
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