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Introduction

Most of existing deep learning-based multichannel speech enhancement
(SE) approaches directly model the noisy-to-clean speech mapping in
one-stage, lacking explicit spatial feature learning which in turn leads to
reduced robustness against uncertainty of target locations.

On the other hand, conventional signal processing-based methods usually
adopt a two-stage design: spatial alignment followed by noise
filtering, mitigating the uncertainty of target speech locations via
explicitly aligning the target speech based on spatial information.

In this work, we propose Align-and-Filter Network (AFnet), a deep
learning framework featuring a two-stage design inspired by the
alignment-followed-by-filtering principle from classical signal processing,
to improve the robustness against spatial uncertainty of target speech in
deep learning-based methods.
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Overview of Methods

Typical deep learning-based methods directly model the noisy-to-clean speech
mapping – Figure (a)

Signal processing approaches perform SE as two sub-tasks – Figure (b)

Our framework models both alignment and filtering processes with deep
networks, by supervising the spatial alignment using relative transfer
functions (RTFs) as the training target – Figure (c)
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Figure: Illustration of different multichannel SE systems.
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Problem Formulation

Scenario: one desired speech source and several interfering noise
signals in a reverberant environment

Signal model: time-frequency domain processing using the
short-time Fourier transform (STFT) assuming an additive noise
model:

Let f, t stand for the frequency and time frame indexes (total: F bins and T frames),
the i-th microphone noisy signal STFT Xi ∈ CF×T of an N -microphone array:

Xi = Hi ⊙ S0 +Vi = Si +Vi, (1)

where Si ≜ Hi ⊙ S0 ∈ CF×T is the speech component received by microphone i, ⊙
denotes element-wise product, Hi ∈ CF×T is the acoustic transfer function between
the speech source S0 ∈ CF×T and microphone i, and Vi ∈ CF×T is the noise
component captured by microphone i.

Goal: to recover the speech component Sr ∈ CF×T of a reference
microphone r ∈ {1, . . . , N} given the N noisy signals X1, . . . ,XN
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Spatial Filtering in STFT Domain

In the STFT domain, multichannel SE systems usually perform spatial
filtering, or beamformig, through proper linear combination of the
microphone signals to obtain the enhanced signal Ŝ ∈ CF×T :

Ŝ =

N∑
i=1

Wi ⊙Xi, (2)

where Wi ∈ CF×T is the set of beamformer filters of microphone i.

When deriving Wi’s, traditional signal processing algorithms typically
require a spatial alignment stage by estimating the temporal (phase)
and level (magnitude) differences among the received speech
components Si’s at all microphones.

In many deep learning-based multichannel SE systems, the notion of
such spatial alignment is often overlooked in the SE network design. In
this work, we advocate for the importance of the alignment process by
explicitly integrating it into the learning framework.
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Proposed Method

Our AFnet interprets multichannel SE process as:

Ŝ =

N∑
i=1

(Fi ⊙Ai)︸ ︷︷ ︸
beamformer Wi

⊙Xi =

N∑
i=1

Fi ⊙ (Ai ⊙Xi)︸ ︷︷ ︸
aligned signals Zi

. (3)

Our framework suggests that the beamformer weights Wi in (2) be
decomposed into spatial alignment (Ai) and filtering (Fi) units.
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Figure: Proposed AFnet based on the “align-then-filter” principle for better capturing
spatial characteristics of speech data rich in directional variety.
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Proposed Method

Learning the Alignment Process: We propose using the speech
RTFs as the training target for the Align Net by:

min Lrtf =
1

N

N∑
i=1

∥Ai − H̃i∥2F . (4)

The alignment mask Ai estimates the speech RTF H̃i defined between
microphone i and reference microphone r:

H̃i ≜ Hr ⊘Hi = (Hr ⊙ S0)⊘ (Hi ⊙ S0) = Sr ⊘ Si. (5)

Ideally, if Ai = H̃i we get the aligned signal as (by using (1) and (5)):

Zi = H̃i ⊙Xi = (Sr ⊘ Si)⊙ (Si +Vi) = Sr + Ṽi. (6)

Learning the Filtering Process: As the goal is to reconstruct the
clean speech at the final output, we train the entire AFnet model by:

min Lrec = β∥Ŝc − Sc∥2F + (1− β)∥|Ŝ|c − |S|c∥2F , (7)

In this work we use β = 0.3 and c = 0.3 for the reconstruction loss.
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Experimental Results

Table: SE performance of aligned and unaligned input signals.

# Mic
PESQ STOI SSNR

Aligned Unaligned Aligned Unaligned Aligned Unaligned

2 2.68 1.68 0.842 0.697 7.86 4.66
4 2.89 1.67 0.862 0.696 8.28 4.56
8 3.04 1.76 0.879 0.719 8.66 4.68

Figure: SE comparison of different RTF alignment schemes for AFnet training.

Lee et al. (Samsung Electronics) AFnet ICASSP 2025 8



Experimental Results

Figure: t-SNE of learned alignment masks for signals coming from three
different locations (loc 1, loc 2, loc 3). AFnet trained with RTF alignment
loss supervision results in separate clusters, corresponding to successively
learned spatial separability.

Table: Generalization to unseen and dynamic acoustic environments.

Method
Unseen rooms Time-varying location

PESQ STOI SSNR PESQ STOI SSNR

AFnet w/o RTF loss 1.77 0.712 4.93 1.71 0.700 4.52
AFnet 1.95 0.740 5.47 1.82 0.720 5.00
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Conclusion

We presented AFnet, a multichannel SE deep learning framework
that exploits the “align-then-filter” notion to handle speech
sources with spatial uncertainty by leveraging the RTF, an
essential component in many signal processing-based algorithms.

Our findings suggest that alignment indeed plays an important
role in deep learning-based approaches, especially for spatially
diverse speech scenarios. We showed that utilizing RTFs as the
training target is an effective way for the model to learn the
alignment process.

More broadly, our work suggests that it would be beneficial to
consider such spatial alignment aspect when developing advanced
multichannel SE systems.
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