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Abstract
Objective:
•To improve noise power spectral density (PSD) estimation

with the aid of the bone-conduction (BC) sensor for ad-
vanced speech enhancement techniques in the Open Speech
Platform (OSP), http://openspeechplatform.
ucsd.edu.

Methods:
•Noise PSD estimation techniques based on the speech pres-

ence probability (SPP) are adopted as the baseline ap-
proaches, such as the minima controlled recursive averag-
ing 2 (MCRA-2) [1] method and the minimum mean square
error noise PSD estimator using SPP (MMSE-SPP) [2].
• In highly non-stationary environments, state-of-the-art

SPP-based techniques could still suffer from inaccurate es-
timation, leading to residual noise or speech distortion.
•We therefore propose a strategy to utilize the BC sensor,

which is relatively insensitive to environmental noise, to
improve SPP-based noise estimation for enhancing the reg-
ular air-conduction (AC) microphone signal.

Results
• In objective quality evaluation, the proposed BC-assisted

strategy improves the speech-to-reverberation modula-
tion energy ratio with normalization (SRMRnorm) [3] in
– MCRA-2 by 0.55 and
– MMSE-SPP by 0.4.
• In informal subjective tests, the proposed BC-assisted strat-

egy obtained 39.5% higher preference score than the base-
line.

1 Introduction
1.1 Bone-conduction (BC) sensor characteristics
•Relatively insensitive to environmental noise than the regular

air-conduction (AC) microphone, as can be seen in Figure 1.
•Main drawback: The high frequency components (> 4kHz)

are significantly attenuated⇒ Not suitable for direct use.
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Figure 1: Spectrograms of (left) the regular AC microphone signal and (right)
the BC sensor signal recorded in a noisy environment.

1.2 Speech enhancement in regular AC microphone system
• Short-time Fourier transform (STFT) based time-frequency (T-

F) domain processing as shown in Figure 2.

•Additive noise model is assumed:
- time-domain: y(n) = x(n) + v(n)

- T-F domain: Y (k,m) = X(k,m) + V (k,m)
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Figure 2: Block diagram of the single-channel speech enhancement system
for regular AC microphone signal. Noise power spectral density (PSD) esti-
mation is crucial to the overall denoising performance. State-of-the-art noise
PSD estimation methods utilized the so-called speech presence probability
(SPP).

1.3 Combining AC microphone and BC sensor signals
•Goal: To improve the quality of regular AC microphone as-

sisted by BC sensor.
•Dataset: Provided by Sonion. http://www.sonion.
com/wp/

•Approaches: Two SPP-based noise PSD estimation techniques
1. Minima Controlled Recursive Averaging 2 (MCRA-2) [1]
2. Minimum Mean Square Error using SPP (MMSE-SPP) [2]
are assisted by the BC sensor.

2 SPP-based noise estimation
•Noise PSD is estimated in a recursive manner:

σ̂2V (k,m) = β(k,m)σ̂2V (k,m− 1) + (1− β(k,m))|Y (k,m)|2,
(1)

where k is the frequency index, m is the frame index, and
β(k,m) is the T-F dependent smoothing factor computed by:

β(k,m) = βmin + (1− βmin)p(k,m), (2)

where βmin ≥ 0 is a constant so that βmin ≤ β(k,m) ≤ 1 and
p(k,m) represents the SPP in the (k,m)-th T-F bin that can be
estimated differently in different approaches
- If p(k,m)→ 1, then β(k,m)→ 1⇒ no update
- If p(k,m)→ 0, then β(k,m)→ βmin⇒ update at full rate
•Two primary issues are identified and illustrated in Figure 3.
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Figure 3: Two primary issues in SPP-based noise estimation: tracking de-
lay (underestimation) and speech leakage (overestimation), leading to residual
noise and speech distortion, respectively.

3 The proposed method
3.1 Two-stage strategy
•Tracking delay mitigation (Stage 1):

- For noise-only frames, set p(k,m) = 0, for ∀k.
Assume noise is always present but speech is not. Update of noise PSD
should be more aggressive when there is only noise.

• Speech leakage alleviation (Stage 2):

- For frames that contain speech, compute p(k,m) using exist-
ing SPP-based techniques.

- Then detect strong T-F speech components and set corre-
sponding p(k,m) = 1.

This is to avoid speech from leaking into the update of noise estimate.

3.2 Incorporating the BC sensor
•Two T-F masks, M1 (for tracking delay issue) and M2 (for

speech leakage issue), are generated using the BC sensor signal
b(n) as additional inputs to the noise estimation block. Figure
4 depicts the proposed BC-assisted scheme:
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Figure 4: The proposed BC sensor assisted scheme.

where the two T-F masks are generated as:

M1(k,m) =

{
1, if |B(k,m)| > t1

0, otherwise
, (3)

M2(k,m) =

{
1, if |B(k,m)| > t2

0, otherwise
, (4)

where|B(k,m)| is the spectral magnitude of the BC sensor sig-
nal b(n) and t1 and t2 are positive threshold values (usually
t2 > t1). Figure 5 shows an example of the two masks.
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Figure 5: An example of the two T-F masks: (Left)M1: to detect noise-only
frames and (right)M2: to identify strong speech components.

4 Performance evaluation
4.1 Objective quality measure results
We compared the speech-to-reverberation modulation energy ra-
tio with normalization (SRMRnorm) [3] as shown in Table 1.

Table 1: Quality in terms of SRMRnorm of the objective test.

Recording AC MCRA-2 MCRA-2 MMSE-SPP MMSE-SPP Method
Environ. Signal Baseline BC-assisted Baseline BC-assisted of [4]

Fan & wind 1.94 3.10 3.92 2.96 3.73 3.12
Cafe 1 2.64 3.42 3.72 3.51 3.69 3.21
Cafe 2 1.78 2.67 3.07 2.66 3.09 2.96
Cafe 3 1.64 2.42 3.00 2.62 3.02 2.98
Car 1 2.36 3.09 3.62 3.21 3.43 3.18
Car 2 1.44 2.34 3.05 2.79 2.99 2.82

Cocktail 1 1.81 2.43 2.82 2.59 2.92 3.10
Cocktail 2 2.24 3.08 3.99 3.38 4.08 2.78
Cocktail 3 2.82 3.43 3.79 3.14 3.46 2.86
Average 2.07 2.89 3.44 2.98 3.38 3.00

4.2 Subjective preference test results
We conducted an informal subjective test with nine subjects and
the obtained preference scores are shown in Table 2.

Table 2: Nine participants were presented with pairs of sentences, one pro-
cessed with one of the baseline methods and the other with corresponding
BC-assisted version. Each pair the sentences were played to the listener in
random order. They were asked to select “No Preference” or one from each
pair of the sentences that had a better overall speech quality.

Techniques No Preference Baseline BC-assisted
MCRA-2 17.28 % 20.99 % 61.73 %

MMSE-SPP 9.87 % 25.93 % 64.20 %
Total 13.58 % 23.46 % 62.96 %

5 Conclusion
In this paper, the BC sensor is used to assist SPP-based noise esti-
mation. Two T-F masks are generated from the BC sensor signal
to reduce tracking delay and speech leakage. It has been verified
by both objective and subjective tests that the proposed strategy
provides significant improvements to the enhanced signal quality.
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