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Deep learning and the degradation problem

Constructing deep neural network (DNN) models by stacking layers unlocks the
field of deep learning, leading to the success in AlexNet (Krizhevsky et al., 2012),
VGG (Simonyan and Zisserman, 2015), etc.

Figure: The degradation problem (He et al., 2016a).

Stacking more and more layers can suffer from the degradation problem.

Optimization landscapes quickly transition from being nearly convex to being
highly chaotic (Li et al., 2018). Stacking more and more layers in DNN
models can easily converge to poor local minima.
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Block-based DNN models

Figure: A residual block (He et al., 2016a).

Figure: A dense block (Huang et al., 2017).

Modern deep learning paradigm has shifted to designing DNN models based
on blocks of the same kind in cascade.

A block comprises specific operations on a stack of layers to avoid the
degradation problem.

For example, residual blocks in the ResNet (He et al., 2016a,b; Zagoruyko
and Komodakis, 2016; Kim et al., 2016; Xie et al., 2017; Xiong et al., 2018),
dense blocks in the DenseNet (Huang et al., 2017), attention blocks in the
Transformer (Vaswani et al., 2017), etc.

ResNets can be even scaled up to 1001 layers or 333 bottleneck residual
blocks, and still improve performance (He et al., 2016b).
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Residual blocks are powerful. But why? Are they provably
better?

Many applications also adopt residual blocks into their architectures, e.g.,
Transformer in machine translation (Vaswani et al., 2017), T-GSA in speech
enhancement (Kim et al., 2020), V-Net in medical image segmentation
(Milletari et al., 2016), etc.

Despite the huge success, our understanding of ResNets is very limited.

Question 1 (No theory has addressed the following question)

Is learning better ResNets as easy as stacking more blocks?
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ResNEsts vs. ResNets
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Figure: A generic vector-valued ResNEst that has a chain of L residual blocks (or units).

We consider the proposed ResNEst model shown above whose i-th residual block
has the input-output relationship

xxx i = xxx i−1 +WWW iGGG i (xxx i−1;θi ) (1)

for i = 1, 2, · · · , L.

The nonlinearity at the final residual representation is dropped.

Expand the input space to RM to accommodate nonlinear features by WWW 0.

ResNEsts are more general than the models in (Hardt and Ma, 2017;
Shamir, 2018; Kawaguchi and Bengio, 2019; Yun et al., 2019).
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Interpretation of basis function modeling in ResNEsts

The input-output relationship for the ResNEst is given by

ŷyyL-ResNEst (xxx) = WWW L+1

L∑
i=0

WWW ivvv i (xxx) (2)

where

vvv i (xxx) = GGG i (xxx i−1;θi ) = GGG i

 i−1∑
j=0

WWW jvvv j ;θi

 (3)

for i = 1, 2, · · · , L.

We define vvv0 = vvv0(xxx) = xxx as the linear feature and regard vvv1,vvv2, · · · ,vvvL as
nonlinear features of the input xxx , since GGG i is in general nonlinear.

We do not impose any requirements for each GGG i .

The output of a ResNEst ŷyyL-ResNEst now can be viewed as a linear function of
all these features or a basis function modeling with a trainable
(data-driven) basis.
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Figure: ResNEst block diagram.

As opposed to traditional nonlinear methods, the ResNEst jointly finds
features and a linear predictor function by solving the ERM problem denoted
as (P) on (WWW 0, · · · ,WWW L+1,θ1, · · · ,θL).

Unlike a basis function modeling, the linear predictor function in the ResNEst
is not entirely independent of the basis generation process.

We call such a phenomenon as a coupling problem which can handicap the
performance of ResNEsts.

The set of parameters φ = {WWW i−1,θi}Li=1 needs to be fixed to sufficiently
guarantee that the basis is not changed with different linear predictor
functions.

We refer to WWW L and WWW L+1 as prediction weights and φ = {WWW i−1,θi}Li=1 as
feature finding weights in the ResNEst.
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Because GGG i is quite general in the ResNEst, any direct characterization on the
landscape of ERM problem seems intractable. Thus, we analyze the following
ERM problem

(Pφ) min
WWW L,WWW L+1

R (WWW L,WWW L+1;φ) (4)

where

R (WWW L,WWW L+1;φ) =
1

N

N∑
n=1

`
(
ŷyyφ
L-ResNEst (xxxn) ,yyyn

)
(5)

for any fixed feature finding weights φ.

Remark 1

Since the set of all local minima of (Pφ) using any possible features is a superset
of the set of all local minima of the original ERM problem (P), any
characterization of (Pφ) can then be translated to (P).
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Non-convex loss landscapes

Assumption 1∑N
n=1 vvvL (xxxn)yyynT 6= 000 and

∑N
n=1 vvvL (xxxn)vvvL (xxxn)T is full rank.

Proposition 1

If ` is the squared loss and Assumption 1 is satisfied, then in (Pφ): (i) the
objective function is non-convex and non-concave. (ii) every critical point that is
not a local minimum is a saddle point.

The optimization problem (P) is also non-convex and non-concave.

This non-convex loss landscape in (P) immediately raises issues about
suboptimal local minima in the loss landscape.

This leads to an important question: Can we guarantee the quality of local
minima with respect to some reference models that are known to be good
enough?
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Augmented ResNEsts (A-ResNEsts)
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Figure: The proposed Augmented ResNEst or A-ResNEst. A set of new prediction
weights HHH0,HHH1, · · · ,HHHL are introduced on top of the features in the ResNEst (see Figure
4).

In the A-ResNEst, (2) is replaced by

ŷyyL-A-ResNEst (xxx) =
L∑

i=0

HHH ivvv i (xxx) . (6)

A-ResNEsts avoid the coupling problem that appears in ResNEsts.
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Assumption 2

The loss function `(ŷyy ,yyy) is differentiable and convex in ŷyy for any yyy .

Proposition 2

Let
(
HHH∗0 , · · · ,HHH∗L

)
be any local minimizer of the following optimization problem:

(PAφ) min
HHH0,··· ,HHHL

A (HHH0, · · · ,HHHL;φ) (7)

where A (HHH0, · · · ,HHHL;φ) = 1
N

∑N
n=1 `

(
ŷyyφ
L-A-ResNEst (xxxn) ,yyyn

)
. If Assumption 2 is

satisfied, then the above optimization problem is convex and

ε
(
WWW ∗L,WWW

∗
L+1;φ

)
= R

(
WWW ∗L,WWW

∗
L+1;φ

)
−A (HHH∗0 , · · · ,HHH∗L;φ) ≥ 0 (8)

for any local minimizer
(
WWW ∗L,WWW

∗
L+1

)
of (Pφ) using arbitrary feature finding

parameters φ.
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Necessary condition for strictly improved residual
representations

Question 2
What properties are fundamentally required for features to be good, i.e., able to
strictly improve the residual representation over blocks?

A fundamental answer is they need to be at least linearly unpredictable.

Note that vvv i must be linearly unpredictable by vvv0, · · · ,vvv i−1 if

A
(
HHH∗0 , · · · ,HHH∗i−1,000, · · · ,000,φ∗

)
> A

(
HHH∗0 ,HHH

∗
1 , · · · ,HHH∗i ,000, · · · ,000,φ∗

)
(9)

for any local minimum
(
HHH∗0 , · · · ,HHH∗L,φ∗

)
in (PA).

Fortunately, the linearly unpredictability of vvv i is usually satisfied when GGG i is
nonlinear.
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Assumption 3

M ≥ No where No is the output dimension of the network.

Assumption 4

The linear inverse problem xxxL−1 =
∑L−1

i=0 WWW ivvv i has a unique solution.

Theorem 1

If Assumption 2 and 3 are satisfied, then in (Pφ) under any φ such that
Assumption 4 holds: (i) every critical point with full rank WWW L+1 is a global

minimum. (ii) ε
(
WWW ∗L,WWW

∗
L+1;φ

)
= 0 for every local minimizer.

Every local minimum of (Pφ) is also a global minimum despite its
non-convex landscape (Proposition 1).

Replacing “in (Pφ) under any φ” with just “(P)” in Theorem 1 produces the
same results. May gain more clarity, but more restricted.

Not limited to fixing any weights during training; and it applies to both
normal training and blockwise training procedures.
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Bottleneck condition

x W0 +

G1 W1

+

G2 W2

· · · +

GL WL

WL+1

WL+1ReLU
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Figure: ResNEst block diagram.

Figure: Basic vs. bottleneck.

A ResNEst needs to be wide enough such that

M ≥
L−1∑
i=0

Ki (10)

to necessarily satisfy Assumption 4.

We call such a sufficient condition on the width and feature dimensionalities
as a bottleneck condition.

Without the expansion, the dimenionality of the residual representation is
always limited to the input dimension. As a result, Assumption 4 cannot be
satisfied for L > 1.
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Improved representation guarantees

Remark 2

Let Assumption 2 and 3 be true. Any local minimizer obtained in (P) such that
Assumption 4 is satisfied guarantees:

(i) monotonically improved (no worse) residual representations over blocks.

(ii) every residual representation is better than the input representation in the
linear prediction sense.

Although there may exist suboptimal local minima in the optimization
problem (P), Remark 2 suggests that such minima still improve residual
representations over blocks under practical conditions.
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Corollary 2

Let Assumption 2 and 3 be true. Any local minimum of (Pα) is smaller than or
equal to any local minimum of (Pβ) under Assumption 4 for any

α = {WWW i−1,θi}Lα

i=1 and β = {WWW i−1,θi}Lβ

i=1 where Lα and Lβ are positive integers
such that Lα > Lβ .

Corollary 3

Let
(
WWW ∗0 , · · · ,WWW ∗L+1,θ

∗
1 , · · · ,θ∗L

)
be any local minimizer of (P) and

φ∗ = {WWW ∗i−1,θ
∗
i }Li=1. If Assumption 2, 3 and 4 are satisfied, then (i)

R
(
WWW ∗0 , · · · ,WWW ∗L+1,θ

∗
1 , · · · ,θ∗L

)
≤ min

AAA∈RNo×Nin

1

N

N∑
n=1

` (AAAxxxn,yyyn) (11)

and (ii) the above inequality is strict if
A
(
HHH∗0 ,000, · · · ,000,φ∗

)
> A

(
HHH∗0 , · · · ,HHH∗L,φ∗

)
.
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Theorem 4

If ` is the squared loss, and Assumption 1 and 3 are satisfied, then in the
optimization problem (Pφ) under any φ such that Assumption 4 holds: (i) WWW L+1

is rank-deficient at every saddle point. (ii) there exists at least one direction with
strictly negative curvature at every saddle point.

Although (Pφ) is a non-convex optimization problem according to
Proposition 1 (i), Theorem 4 (ii) suggests a desirable property for saddle
points in the loss landscape.

Again, we require the bottleneck condition to be satisfied in order to
guarantee such a nice property about saddle points.

Theorem 4 is not limited to fixing any weights during training; and it applies
to both normal training and blockwise training procedures.
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Empirical results

Archit.
Type

Standard ResNEst BN-ResNEst A-ResNEst

WRN-16-8 95.56% (11M) 94.39% (11M) 95.48% (11M) 95.29% (8.7M)
WRN-40-4 95.45% (9.0M) 94.58% (9.0M) 95.61% (9.0M) 95.48% (8.4M)
ResNet-110 94.46% (1.7M) 92.77% (1.7M) 94.52% (1.7M) 93.97% (1.7M)
ResNet-20 92.60% (0.27M) 91.02% (0.27M) 92.56% (0.27M) 92.47% (0.24M)

Table: CIFAR-10.

Archit.
Type

Standard ResNEst BN-ResNEst A-ResNEst

WRN-16-8 79.14% (11M) 75.43% (11M) 78.99% (11M) 78.74% (8.9M)
WRN-40-4 79.08% (9.0M) 75.16% (9.0M) 78.97% (9.0M) 78.62% (8.7M)
ResNet-110 74.08% (1.7M) 69.08% (1.7M) 73.95% (1.7M) 72.53% (1.9M)
ResNet-20 68.56% (0.28M) 64.73% (0.28M) 68.47% (0.28M) 68.16% (0.27M)

Table: CIFAR-100.

A-ResNEsts empirically exhibit competitive performance to standard ResNets.
Keeping the batch normalization and simply dropping the ReLU at the final
residual representation in standard pre-activation ResNets gives competitive
performance.
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Densely connected Nonlinear Estimators (DenseNEsts)

x Q1 Q2 Q3 · · · QL WL+1 ŷDenseNEst

Figure: DenseNEst block diagram.

Proposition 3

If Assumption 2 is satisfied, then any local minimum of (PD) is smaller than or
equal to the minimum empirical risk given by any linear predictor of the input.

No special architectural design in a DenseNEst is required to make sure
it always outperforms the best linear predictor.
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DenseNEsts are wide ResNEsts with bottleneck residual
blocks equipped with orthogonalities

x ©
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©

Q2
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v1

x1
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xL−1

vL

xL

Figure: DenseNEst block diagram.

Proposition 4

Given any L-block DenseNEst ŷyyL-DenseNEst, there exists a wide L-ResNEst with
bottleneck residual blocks ŷyyL-ResNEst such that ŷyyL-ResNEst(xxx) = ŷyyL-DenseNEst(xxx) for
all xxx ∈ RNin and ε = 0 for all local minima.

Any DenseNEst can be viewed as a ResNEst satisfying Assumption 4.

Proposition 4 can be regarded as a theoretical support for why standard
DenseNets (Huang et al., 2017) are in general better than standard ResNets
(He et al., 2016b).
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